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Kurzfassung

Ein Ozean, der unterschiedliche Windbedingungen widerspiegelt, sich

entsprechend dem Terrain verhält und Interaktionen mit Objekten er-

möglicht, hat großes Potenzial, die Glaubwürdigkeit von virtuellen Welten

zu steigern. Dessen Simulation und Darstellung muss jedoch schnell genug

sein, um auch gemeinsam mit weiteren Elementen der Welt in Echtzeit

berechnet werden zu können. Diese Arbeit verwendet ein GPU-gestütztes

Verfahren zum Generieren der Oberfläche tiefer Gewässer mithilfe der

schnellen Fourier-Transformation. Es wird beschrieben, wie die dabei ver-

wendetenWellenspektren abgetastetwerdenkönnen,umnahtloseÜbergänge

bei wechselndem Seegang zu gewährleisten. Fehlende Einflüsse des Terrains

und der Interaktion mit Objekten werden durch eine Flachwassersimula-

tion mit der Lattice-Boltzmann-Methode ergänzt. Dabei wird eine jüngst

vorgestellte Variante mit geringerer Speichernutzung erprobt und gezeigt,

dass ihre Eigenschaften es erlauben, ein sehr großes Gebiet mit variablem

Detailgrad abzudecken. Die Erkenntnisse können auch außerhalb der Com-

putergrafik zumEinsatz kommen. Eine abschließende Performance-Analyse

und Diskussion bestätigt die Eignung für Echtzeit-Anwendungen und zeigt

Nachteile sowie Verbesserungsmöglichkeiten.

Abstract

Anocean that reflectswind conditions, reacts to the terrain and interactswith

rigid bodies has great potential to improve believability of virtual worlds.

Its simulation and rendering need to be fast enough to meet the real-time

requirement in conjunction with many other features. This work employs a

multi-band Fast Fourier Transform approach to synthesize amixed sea ocean

surface valid in deep water. A sampling strategy for wave spectra suitable

for seamless transitions of sea states is introduced, and recommendations

for a complete GPU implementation are made. Deep water is coupled

with a shallow water simulation to supplement terrain awareness and rigid

body interactions. For this, a recent improvement of the Lattice Boltzmann

Method with reduced memory usage is adopted and implemented on the

GPU. It is found how its properties can be used to cover a large-scale area

with varying level of detail which may be of interest beyond the computer

graphics research. A performance analysis and discussion of the results

demonstrate the suitability for real-time applications, point out deficiencies

and suggest exciting future work.
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1 Introduction

Oceans are what makes our planet blue, they are the cradle of life, can be

soothing andmesmerizing and at the same time be powerful and destructive.

Longbefore computergraphics existed,oceans,waves andwaterwere subject

of research. This accumulated knowledge finds its use inweather forecasting,

climate research,maritime simulations, structural analysis, the film industry

and many more. In this work ocean rendering and simulation is examined

for the usage in a video game, one application area of computer graphics

with very strict performance demands. Achieving realistic water behaviour

at a large scale with just a few milliseconds of computing time is not an easy

task. However, the possibility of doing this has been pushed since the early

days of computer graphics and every new hardware generation allow new

steps towards the goal.

While oceans have a wide range, the focus shall be on its surface viewed

from above with a visible range of several kilometres down to a few meters.

This includes both offshore zones with deep water and shore zones with

shallowwater reacting to the seabed. A distinction of these zones is practical

since waves, which are perceived on the sea surface, behave differently if

they are affected mainly by gravity or instead confined by the solid sea bed.

Different wave spectra, that were developed using measurements of real-

life sea states, are the employed foundation to describe the ocean surface in

deep water. The Fast Fourier Transform is one way to use these spectra and is

capable to consider a great amount of waves for a wide range ofwavelengths.

Both its application in real-time and seamless transitions of sea states for

different wind conditions require special attention. Hereof suggestions and

considerations towards improved performance and better controllability are

made.

Interactive behaviour of water can be introduced with a fluid simulation

that can be particularly performance demanding but also particularly

rewardingwith its results. The associated branch of research has led to a vast

amount of methods suitable for different kinds of applications. Sacrificing

or approximating fluid details allow making a fluid simulation feasible

for real-time usage. This work adopts a recent improvement of the Lattice

BoltzmannMethod to solve the shallowwater equations and researches how
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1 INTRODUCTION

to span large areas while maintaining high details in vicinity to the camera.

It is supplemented by interactions between rigid bodies and the simulated

ocean surface.

Both deep and shallow water models are combined to deliver the

necessary inputs for the ocean to be rendered by an existing rendering

solution. The achieved results are discussed to both provide insights into

their possibilities and limits and suggest ways for further improvement and

future work.

1.1 Structure of the Work

Chapter 2 starts with a computer graphics related overview of ocean sim-

ulation. It continues with notable related work classified in oceanographic

models to simulate deep and physically-based models to simulate shallow

water. This classification largely is used throughout the work to enable

reading the respective topics specifically. In section 2.4 requirements are

presented and the choice of simulation technique is justified.

Essential background knowledge is introduced in section 3.1 of chapter 3.

A detailed introduction of wave spectra, the basic approach of synthesizing

the ocean surface in deep water with the Fast Fourier Transform (FFT) and

more recent improvements follows in section 3.2. Shallow water simulation

with the Lattice Boltzmann method (LBM) and its recent enhancement are

presented in section 3.3. The last part 3.4 of the chapter introduces and

discusses an approach to generate the ocean’s surface mesh.

Chapter 4 covers this work’s implementation, proposed ideas and

suggestions for computations on the graphics processing unit (GPU). An

initial overview is followedby the FourierTransformbaseddeepwatermodel

in section 4.1. Here, a wave spectra sampling strategy is recommended and

its GPU computation is presented. Section 4.2 first clarifies the employed

fluid simulation’s properties and continues to derive a level of detail (LOD)

systembasedon thegained insights. A focus is puton stability conditions and

the GPU implementation. Coupling of deep water with the shallow water

simulation in section 4.3, rigid body interactions 4.4 and the combination

and utilization of simulation outputs in section 4.5 close the chapter.

Results are discussed in chapter 5 giving an assessment of what worked

or should be improved. This is supported by the comparison with existing

work and an in-depth performance analysis. The conclusion in chapter 6

sums up the results and provides directions for future work.
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2 Related work

This introduction of relatedwork starts with the review of surveys providing

an overview and means of classification which are useful in the course of

the work. It is followed by briefly summarized notable examples which are

considered to serve as a good starting point for further research.

2.1 Ocean Simulation in Computer Graphics

Darles et al. [Dar+11] present ocean simulation techniques classified into

two main categories. The first category includes parametric or spectral

models based on oceanographic research and the second physically-based

models from the computational fluid dynamics research branch. Former

make use of theoretical and empirical results of the oceanography research

field that are especially used and suited to describe the properties of the

sea and its surface in deep water. Shallow water, whose complex motion

is affected and defined by the bottom of the sea, is best modelled with

fluid dynamics where Navier-Stokes equations are emphasized in particular.

After this introductory observation, Darles et al. stick with the classification

of ocean simulation into deep and shallow water and provide further

subdivisions. Thus, deepwater simulations can be divided in spatial domain

approaches, Fourier domain approaches and in hybrid approaches that

combine both previous ones. Shallow water simulations are divided in

Eulerian approaches usually solving the Navier-Stokes or related equations

on a 2D or 3D grid, in Lagrangian approaches that employ particles instead

of grids and again in hybrid approaches.

Manteaux et al. [Man+17] focus on adaptive physically-basedmodels for

various simulations including fluids and present a taxonomy with temporal

and geometric adaptivity as the two main categories. Their definition of

adaptivity requires a model or simulation method to adapt itself at runtime

based on the simulation state in order to meet certain criteria like reducing

computational complexity or improving quality in specific areas. Temporal

adaptivity includes selecting an appropriate time step either globally for

the entire simulation domain or locally, both under consideration of some

criteria that usually are required for accuracy and stability reasons. It is

3



2 RELATEDWORK

mentioned that changing the time step at runtime highly depends on

the integration scheme, as some rely on fixed time steps. Additionally,

replacing an integration scheme or freezing time under certain conditions

are considered to be temporal adaptive solutions. Geometric or spatial

adaptive techniques can utilize a refinement criterion to determine where a

refinement scheme should to be applied. Simple refinement criteria may be

the distance to or curvature of a surface. The depth of a liquid or its surface

detailmeasured by a deformation factor are examples formore sophisticated

criteria. Examples for refinement schemes are spatial structures like quad-,

or octrees, mesh refinement,locally increasing the amount of samples or

multi-scale methods that hierarchically couple different resolutions. Instead

of refining, moving grid methods rely on placing simple uniform grids at

point of interests like specific objects in a scene, and moving the grid with

them. While this keeps the simple nature of uniform grids, the coupling of

overlapping grids requires special attention. Regarding fluid simulations

so-called mixed models combining 2D and 3D representations or Eulerian

and Lagrangian approaches are highlighted. Here, the seamless coupling

is noted to be a difficulty. Finally, Manteaux et al. point out that adaptive

methods are not free of limitations as they are difficult to develop and tend

to increase the complexity of the model, which can have a negative impact

on GPU implementations.

Kellomäki [Kel17] considers the topic of water simulation in terms

of its application in computer games. He points out that performance

requirements aremuch stricter than they are for research purposes because a

game cannot use all available system resources just for the water simulation.

Furthermore, the robustness of the simulation is important, as instabilities

or artefacts may ruin the user experience. Instead of reaching for a more

stable simulation by sacrificing performance, Kellomäki suggests that it

is preferable to accept a less realistic simulation result and rather aim for

plausibility.

2.2 Deep Water Simulation

In 1986, Fournier and Reeves [FR86] describe a model to parametrically

describe the surface of ocean waves using modified Gerstner Waves which

date back to the 19th century. This is most likely the first introduction of

Gerstner Waves to the computer graphics research field. Cutting the surface

along a vertical coordinate plane exposes that the basic model is a trochoid.

Thus, a single GerstnerWave consists of two sine waves on the surface plane.

Their modifications and introduction of parameters allow to manipulate the

curves steepness and shape, to align the waves with the wind and lining

them up with the beach’s slope. Evaluating the surface’s curvature and the

speed of a point on the surface allows the detection of breaking waves and
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2.2 DEEP WATER SIMULATION

the generation of spray and foam.

Bruneton, Neyret, and Holzschuch [BNH10] model deep ocean waves

with a sum of 60 Gerstner Waves and choose the controlling parameters

according to the Pierson-Moskowitz spectrum. They focus on a hierarchical

representation of the waves to seamlessly fade between geometry, surface

normals and an ocean surface BRDF depending on the distance to the

camera.

Bucci and Longchamps [BL17] present the ocean technology used for

the video game Hitman (2016) at the Game Developers Conference (GDC)

2017 which also relies on Gerstner Waves. In addition to a base layer of 8

Gerstner Waves travelling in different directions for open water, they model

coastal waves that match the curvature of the shoreline. Placement of coastal

waves is done manually and the user controls their look and spatial extent

with parameters including the direction and the curvature. They justify their

decision for Gerstner Waves over waves created with the FFT foremost with

the computational efficiency, the simplicity to generate surface normals and

the less visible spatial tiling.

Tessendorf [Tes01] uses GerstnerWaves mainly as a way to lead up to the

topic of Fourier Transform, as they share some fundamental similarities.

Instead of adding up multiple Gerstner Waves in spatial domain, he

recommends using the FFT which is superior in evaluating sums. The result

is a single tileable heightmap of the ocean surface of adjustable spatial size

and resolution. Besides a heightmap surface normals can either be computed

with central differences or by means of the slope obtained through Fast

Fourier Transform. Sharper wave crests can be obtained with an additional

displacement to achieve the look of rough sea. At the time of 2001 his

approach was already used in cinema forWaterworld (1995) or Titanic (1997)
but since then it was adopted and improved multiple times and can clearly

be considered a groundbreaking work. The main drawback of the approach

is that the Fourier grid’s resolution is directly connected to the surface’s

level of detail. In real-time applications it is not possible to use resolutions

matching those of films and thus the resulting surface lacks high frequency

waves.

Fréchet [Fré06] proposes an adaptive sampling scheme of the underlying

wave spectrum to concentrate on the interval with the highest energy.

Additionally, for close up views of the surface, short waves are preferred

by taking more samples in low frequency intervals. This approach enables

interactive frame rates back in 2006 with a richer surface than Tessendorf’s

approach.

As LeBlanc et al. [LeB+12] point out, non uniformly spectral sampling

loses the computational savings of the FFT. Theypresent adifferent approach

to tackle the problem of a lack in details, by splitting the spectrum in several

narrowbands, eachofwhich is individually transformedusing the FFT.With

four separate Fourier grids of low resolution they obtain visually comparable
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Figure 2.1: Image of an ocean in stormy conditions from [Tch15] shows convincing

foam on wave crests.

results to a single high resolution Fourier grid as used in the film Titanic
(1997) whilst achieving an immensely higher frame rate.

The GDC presentation from Tcheblokov [Tch15] shows a similar tech-

nique from NVIDIA’s WaveWorks as used in the game War Thunder (2015).
Here, the frequency bands are called cascades and it is suggested to fade

out those cascades containing higher frequencies at greater distance. He

shows improvements alongside specific recommendations for foam simula-

tion (which can be seen in figure 2.1) based on Tessendorf’s work and shore

interactions that has similarities to Fournier and Reeves’ parametric shore

waves.

At GDC 2019 Mihelich and Tcheblokov [MT19] show a more recent

version of NVIDIA’s WaveWorks adopting an advanced wave spectrum as

input for a multi-band Fourier Transform approach that allows modelling

waves emerging from local wind and distant storms. They also greatly

improve the visual quality of surface shading due to the usage of a

bidirectional reflectance distribution function (BRDF) for surface shading

and subsurface light scattering.

Park and Park [PP20] propose a mixed sea simulation for use in real-time

maritime simulators. They employ a multi-band approachwith the addition

of multiple sea systems modelled by different sea wave spectra. In a single

sea system all waves travel in the same direction as they are synthesized

using the same input parameters. Multiple sea systems with appropriate

wave spectra enable modelling local wind sea and swells, which correlates

to Mihelich and Tcheblokov’s presentation of NVIDIA’s WaveWorks.

2.3 Shallow Water Simulation

As shown by Darles et al., physically-based water simulation can be coarsely

divided into Lagrangian and Eulerian approaches. The research for this

work has revealed, that Lagrangian approaches of water simulation usually
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2.3 SHALLOWWATER SIMULATION

have a very restricted spatial simulation domain as a large domain like

an open ocean requires an enormous amount of particles. Therefore, their

usage in large scale real-time simulations is either supplementary in hybrid

approaches for local improvements of a coarser grid-based approach, or the

term real-time is less strictly defined and does not fulfil the performance

requirement for video games.

Opting for height field based 2D grids simplifies the simulation of fluid

enough to become viable for large scale usage in video games. Examples

supporting this are the games From Dust (2011) and Cities: Skylines (2015)
that use the simulation for game-play elements [Kel17]. An important

consideration is that all 2D height field based fluid simulations have the

common drawback of missing important features due to the reduction of

dimensionality. Among these are waterfalls, splashes and breaking waves.

Nevertheless, the reduced computational cost is what still makes them

attractive.

A crucial aspect that always has to be considered is the stability of

the simulation. While numerical integration schemes may have different

stability conditions, they are always connected to the time step, the spatial

extent of the simulation domain and the speed at which information

propagates [Man+17].

One widely adopted grid-based approach for 2D fluid simulation is the

virtual pipe model proposed by O’Brien and Hodgins [OH95]. Vertical

columns of water are connected by virtual pipes to its four or eight

neighbours through which the flow of water is simulated. Water depth

is explicitly forward integrated based on the in and outflow to obtain the

water depths on a grid. Thismodelwas pickedup almost simultaneously but

independently by Maes, Fujimoto, and Chiba [MFC06] and Mei, Decaudin,

and Hu [MDH07]. Both describe a possible GPU implementation, which

is an important property for a simulation to be of use in a large-scale

real-time application. Kellomäki adopts Mei, Decaudin, and Hu’s solution

and evaluates its suitability for computer games. The video game Sea of
Thieves (2017) also uses their approach [Ang+18] alongside some extensions

to supplement missing features of waterfalls and streams. Since it is an

explicit method, the time step must be small enough for the information

to propagate within the limits of the lattice size [Man+17; MDH07]. The

exact limit on the time step is affected by various factors and thus can

only be approximated [MDH07]. Therefore, it may be found experimentally

depending on the simulated problem as done byKellomäki using a time step

of 25 ms. Additionally, no advection of the velocity like in the shallow water

equations is performed which does not allow for vortices to appear [Kel17].

A velocity field can be reconstructed but the velocity itself has no effect on

the fluid simulation.

Besides the pipe model there is a large array of works that refer to the

shallow water equations (SWE) that are derived from the Navier-Stokes
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Figure 2.2: The shallow water simulation from Chentanez and Müller renders

vortices visible with the addition of high frequency FFT waves and

texture coordinates that are advected with the velocity field [CM10].

equations. With several assumptions and simplifications the SWE allow to

simulate the water’s depth and horizontal velocity, however they cannot

correctly handle deep water, which is already suggested by their name.

Thurey et al. [Thu+07] utilize them to simulate a water height field and

detect steep wave fronts at which they modify the mesh to reintroduce the

missing feature of breaking waves. The velocity is used to spawn additional

particles depicting spray.

Chentanez and Müller [CM10] solve the SWE using an explicit integra-

tion scheme and handle potential sources of instabilities with special care.

Enforcing certain limits on the depth and velocity is their main idea to keep

the integration stable. Unfortunately their proposed stability enhancement

do not guarantee stability. In addition to the grid-based simulation they

employ a particle simulation to spawn both spray and foam near breaking

waves or waterfalls and splashes from interactions with rigid bodies. For the

stable simulation with a reasonable time-step the lattice size gets rather high.

Therefore, they enhance the surface with high frequency details by sampling

waves created by a FFT and advecting the associated texture coordinates

with the velocity field (see in figure 2.2).

A different approach of solving the SWE is based on the LBM which

experienced an increase of interest in the last decades. It differs from

numerical solutions as it based on statistical physics and simulates the

flow of a fluid in terms of fictive microscopic particles moving along a set of

discrete lattice vectors [Zho04, p. 19; Tub10]. The microscopic formulation

allows simple and efficient computations and can correctly describe different

macroscopic governing equations, including the SWE [Zho04, p. 19; Tub10].

Besides numerous mathematical research publications from Zhou who

actively researches this field with a focus on SWE [Zho04; Zho11; ZL13;

Zho19b], the dissertation [Oje13b] and published paper [Oje13a] presents

the LBM in a computer graphics context. Ojeda couples a 2D shallow water

LBM simulationwith a particle simulation to add spray atwave fronts. What

makes the LBM appealing is, that it has well-researched stability conditions

and it is a suitable candidate forGPU implementation because computations

only operate in a local neighbour.
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2.4 CHOICE OF SIMULATION TECHNIQUES

Before closing this brief summary of related work it shall be mentioned

that there is an abundance of excellent and promising literature about

simulating and rendering oceans let alone simulating fluids. Listed works

were selected because they met certain criteria. They were either considered

useful to provide an overview and insight into the course of research, or

found to be promising due to introducing novel ideas, identifying related

problems, proposing possible solutions or achieving desirable results.

2.4 Choice of Simulation Techniques

An initial informal gathering of requirements with Limbic Entertainment
provides the basis of decision-making. Regarding performance a frame

budget of approximately 2 ms was endorsed which aligns itself with the

statement of Kellomäki in [Kel17] about a strict performance requirement

for computer games. As a functional requirement, the simulation needs to

support interactions with its environment. In particular waves need to be

aware of the seabed as they are able to reach the shore, be affected by wind

in a plausible way and preferably they should not run up the shores of an

island uniformly from all directions. There needs to be some interaction

between the water and rigid bodies. Examples for rigid bodies are anchored,

sailing or sinking ships anddebris hitting thewater surface. Possible but non-

mandatory effects on the water surface are foam, splashes and spray whilst

ships should naturally be able to float. Other non-mandatory ideas include

the capability to see the terrain or sunken ships below the water surface, the

support of a day and night cycle or a maelstrom. Finally, the primary view

is a top-down perspective with the option for occasional close-up views.

With these requirements inmind,a combination of the FFT for simulating

deep water with the LBM for simulating shallow water was chosen.

The FFT approach promises the simulation of a highly realistic ocean

surface with the possibility to model varying wind conditions. It already

met the requirements of the film industry and there has been ongoing

research for usage in real-time applications. The required rigid body and

shore interactions can be achieved with a physically-based shallow water

simulation. Here, the LBM is promising due to its simple computations and

possible GPU implementation. In contrast to other numerical solutions like

the explicit integration scheme as proposed by Chentanez and Müller in

[CM10], the LBM for the SWEmakes clear statements on stability conditions.

Moreover, a recent publication of Zhou proposes an updated concept of the

LBM which sparks interest, since Zhou calls it a revolutionary and precise

minimal method [Zho19b]. It removes the drawback of a high memory

requirement and allows direct use of water depth and velocity. Since this are

major improvements for the practical usage in real-time application this new

formulation of the LBM method was chosen for the context of this work.
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3 Background

Henceforth, the classification of water in the two zones of deep and shallow

water is adopted and it is shown to be well-founded. Different physical

properties in these zones allow for approximations to be made which in

turn render some approaches useful and others unsuitable. In this chapter,

after an introduction of necessary basics is given, the chosen approaches to

model and animate an ocean’s surface in shallow water and in deep water

are shown in more detail.

3.1 Oceanographic Fundamentals

The surface ofwater is rarelyflatandstill but rather inmotion.Whetherwaves

are caused by wind, gravity, tectonic movements or impacting bodies they

share two common properties. Energy is propagated and the displacement

is travelling through the medium without permanently displacing it as

a whole [Bee97, p. 59]. Before introducing specific approaches of water

simulation, fundamental nomenclature and their meaning shall be clarified.

The following introduction is based on [Bee97, p. 59–63], if not stated

otherwise.

Idealized waves like sinusoidal waves or the waves depicted in figure 3.1

are periodic and work well to describe wave parameters. Crests and troughs

propagate at a phase speed c. Measuring the time it takes for two successive

crests or any other corresponding position passing a fixed point yields the

period T and the frequency f as the period’s inverse. The distance between

such successive points is the wave length �. The height of a wave is the

difference between the lowest and highest point of the wave whereas the

amplitude is the difference between the mean sea level and the crest or

trough. Finally, the water depth d is the distance from the bed to the mean

sea level.

Tracking theposition of a particle inwater reveals a circularmotionwhich

is a visual explanation of why pi is omnipresent in wave theory. Therefore,

using the definition of the angular wave frequency $ = 2�f is convenient.

In terms of frequency and period, the phase speed (or celerity) is defined

as c = f/T. Using angular units it can be equivalently written as c = $/k.

10
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Figure 3.1: A schematic illustration of shallow water (left) and deep water (right)

presents basic waves parameters based on [Bee97, pp. 60–62]. The

trajectory of a particle in shallow water pB in comparison to that of

a particle in deep water p3 visualizes the idea of shallow water feeling

the sea bed.

Here, k is the angular wave number which is short for (2�)/f . Observing

the motion of a wave in an ideal and closed environment easily reveals it is

moving in a direction. The wave vector k points into this direction of wave

propagation and its magnitude equals the wave number k [Tes01].

If the water depth is high in relation to the wavelength, the resisting

influence of the ocean bed on the surfacewave is negligible. In shallowwater,

on the other hand, the wave is heavily influenced by the ocean bed. The

particle trajectories in figure 3.1 illustrate this effect and show an elliptical

motion in shallow water and a circular motion in deep water. Put into

numbers, water is considered deep with a depth greater than 1/4 of the

wavelength and water is considered shallow with a depth smaller than 1/20

of its wavelength. The name shallow water can be misleading at first since

it is not a classification in terms of an absolute water depth. However, the

conditions for shallow water are usually satisfied in water of little depth.

The exact ratios for classification may vary depending on literature.

Angular wave frequency $ and the wave number k are connected by

the so-called dispersion relation, which is why sometimes the angular wave

frequency is written as a function of the wave number $(k). This important

relation describes the property of waves with different wave lengths moving

at different speeds [Tes01] and constitutes a limiting factor on the wave

speed c. Distinguishing shallow and deep water allows for a mathematical

approximation in these zones,whereas the intermediate zone would require

a more sophisticated formula [Ste08, pp. 274–275].

c = �
T
=
$
k
=


√

gk if d > �/4√
gd if d < �/20√
gk tanh (kd) in between

(3.1)
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Offshore
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Converging
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Diverging Waves

Figure 3.2: A schematic illustration how waves in shallow water near the shore

heavily are influenced by the seabed topology. On the left side of the

figure the different zones offshore, inshore, shore and coast are labelled.

This illustration is based on [Bee97, pp. 30–32].

3.1.1 Waves under Realistic Conditions

Under realistic conditions waves on the ocean are not as ideal as depicted

in figure 3.1 and there is not just a single wave of a specific wavelength. To

make a statement on the height of waves on the ocean, either the average

of the significant wave height can be used. The significant wave height

is the average of the highest third of waves height which approximately

correlates to what an observer estimates the height to be [Bee97, p. 72].

Surface waves can be classified by their period or frequency. For an observer

it becomes particularly difficult to estimate the height of waves Capillary

waves are very short waves of high frequencies and are caused for example

by surface tension. Tides form the other extreme with very long waves and

periods of several hours. In between are the waves caused by wind, with

swells in the lower frequency range and local wind waves covering a wider

spectrum. As the name suggests, local wind waves are created by local wind

whereas swells originate from wind in areas further away. In strong local

wind conditions waves of rather low frequencies cause a choppy surface.

But during a windless day the water surface is not necessarily free of waves

as for instance coastal water in California can exhibit swells from distant

storms near New Zealand [Bee97, p. 59]. This work uses the term of a wave

system or sea system to describe a group of waves that shares characteristics

under which they were created.

When deep water waves reach the shallow water near the shore, they

undergo changes due to the speed being depth limited as expressed in

equation 3.1. As they slow down the wavelength decreases and successive

crests and troughs are getting closer. Non-parallel arrivingwaveswill always

bendparallel to the shorewhich is known as refraction,because a point of the

wave front closer to the shore slows down earlier than a more distant point

of the wave. Different seabed topologies cause different refraction patterns

12



3.1 OCEANOGRAPHIC FUNDAMENTALS

as illustrated in figure 3.2. In a bay, waves are diverging and as a result the

wave heights are lower. A headland experiences exactly the opposite, where

the waves are converging towards the tip of the headland resulting in much

higher waves.

As the speed c in shallow water is directly related to the water depth,

the wave’s speed at crests and troughs differs significantly upon approach

the shoreline. Crests moving at higher speeds will eventually overtake the

slower moving troughs and the wave will break. Depending on the beach’s

slope and the ratio of wave height to wave length of the arriving deep water

wave, different types of breaking waves occur.

For a more in-depth introduction into oceanography the books Environ-
mental Oceanography [Bee97] by Beer and Introduction to Physical Oceanogra-
phy [Ste08] by Stewart are a possible starting point.

Figure 3.3: The ocean surface can be synthesized by adding up many sinusoidal

waves. This schematic illustration is basedon the idea ofPracticalMethods
for Observing and Forecasting Ocean Waves by Means of Wave Spectra and
Statistics [PJN55].
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3.2 Simulating Deep Water

Swells from distant storms around the globe and local wind waves build a

seawithwaves of highly diverse frequencies travelling in different directions.

To analyse the ocean’s wave components or to synthetically reconstruct it,

utilizing the French mathematician Jean-Baptiste Joseph Fourier’s (1768-

1830) insights proves useful. He discovered that any periodic wave can

be expressed as a sum of an infinite number of sine waves [Bee97, p. 70].

Figure 3.3 depicts this idea transferred to the surface the ocean.

As mentioned previously, it is possible to model waves in spatial

domain adequatelywithGerstnerWaves or otherperiodical functions.While

advantages of working in the spatial domain are comprehensibility and the

computational upside of directly calculating the sought variables, the main

disadvantage is that adding up signals in spatial domain is not the fastest

option. The Fast Fourier Transform, on the other hand, is very efficient in

quickly adding up signals. In fact, it is so efficient that a proper approach

to generate signals is required. The next section introduces the concept of

wave spectra which enables exactly that.

3.2.1 Ocean Wave Spectra

A nice way to introduce wave spectra may be to look at the steps Park and

Park use in their work [PP20] to verify the physical validity of their result.

First, they synthesize an ocean height field using an extended version of

Tessendorf’s FFT approach. This involves sampling spectral densities of a

wave spectrum which are required as input for the transformation. They

proceed by recording the wave heights at a single location on the ocean

surface for a certain period of time (see figure 3.4). This signal in time-

domain can be transformed back to frequency-domain by applying the

Fourier Transform and Park and Park are able to reconstruct the original

wave spectrum quite accurately. Details on how to calculate awave spectrum

are not considered in this work but can be found in chapter 16 of Introduction
to Physical Oceanography [Ste08].

Instead of measuring the heights of a synthesized ocean, surface spec-

tra used in oceanography research obtain measurements from buoys or

ships. More specifically, the Pierson-Moskowitz Spectrum uses measure-

Figure 3.4: A time line of recorded wave heights measured in a wind sea by [PP20].
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3.2 SIMULATING DEEP WATER

ments taken on two weather ships in the North Atlantic [PM63] during

different wind conditions in 1963, whereas the Joint North Sea Wave Project

(JONSWAP) obtained data from thirteen wave stations in the North Sea in

1969 [HO73]. The obtained spectra were used to find a function of frequency

that both closely matches the recorded data and can be manipulated by

several convenient parameters [Ste08].

The Pierson-Moskowitz spectrum

The Pierson-Moskowitz Spectrum models a fully developed sea which

assumes that waves come into a state of equilibrium after the wind blows

steadily for a long time covering a large area [Ste08].

S($) =

62

$5

exp

(
−�

(
$?

$

)
4

)
(3.2)

Here, 
 = 0.00779, � = 0.74 are constants controlling intensity and shape

and $? = g/(U19.5) is the peak frequency with the wind speed U19.5 being

measured at a height of 19.5 m above the sea surface [PM63].

The JONSWAP spectrum

The data of the Joint North Sea Wave Project indicated that in reality, a

sea is not fully developed but rather continues to stay in a developing

state [HO73]. They include this property in their spectrum function with

a wind fetch F parameter, which allows to control the distance the wind

has travelled over the sea. The � parameter allows to adjust the peak of the

spectrum and enhances interactions between waves, which turns out to be

visually important [Ste08].

S($) =

g2

$5

exp

(
−5

4

(
$?

$

)
4

)
�A (3.3a)

A = exp

(
−
($ − $?)2

2�2$?
2

)
(3.3b)

Here,
 = 0.00776

(
(U2

10
)/(Fg)

)
0.22

, thepeak frequency$? = 22

(
g2/(U10F)

)
1/3

,

the peak enhancement factor � and � = 0.07 for $ ≤ $? and � = 0.09 for

$ > $? [HO73; Ste08].
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Figure 3.5: Comparison of JONSWAP and JONSWAP-Glenn Spectrum. Parameters

for JONSWAP: F = 500 km,U = 10 m s
−1 , � = 1.51 and for JONSWAP-

Glenn: T? = 15 s,Hs = 2 m. Two plots of JONSWAP-Glenn highlight

the impact of the peak enhancement factor � as suggested in [PP20]

compared to � = 3.3.

The JONSWAP-Glenn spectrum

The JONSWAP-Glenn spectrum [Ola+13] is a variation of the JONSWAP

spectrum which is suitable for modelling the low frequency swells [PP20].

S(f ) = 2
(

f
f?

)−5

exp

©­«−5

4

(
f?
f

)
4ª®¬ �A (3.4a)

2 =
5Hs

2

16f?

(
1.15 + 0.1688� − 0.925

(1.909 + �)

)−1

(3.4b)

Hs describes the significant wave height which is the average height of

the waves in the highest third of the wave spectrum [PP20]. The peak

frequency f? can be expressed by means of the peak period T? . Park and

Park suggest choosing the peak enhancement factor � in relation to Hs and
f? with � = 9.5Hs

0.34f? . Its effect on the spectrum can be seen in figure 3.5.

Applying directional spread

In addition to wave spectra, the direction of travel can be taken into account

since they tend to travel in the direction of wind. This can be applied in

frequency domain with a spreading function published in [LCS63] and
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3.2 SIMULATING DEEP WATER

Figure 3.6: The JONSWAP spectrum (left)multipliedwith the directional spreading

(center) yields the directional wave spectrum (right).

obtained from [PP20]:

Dir ($, �) =
Γ

(
s($) + 1

)
2

√
�Γ

(
s($) + 0.5

) (
cos

(
�
2

))2 s($)

(3.5a)

s($) = 16.0

(
$
$?

)�
(3.5b)

� =

{
5.0 if $ ≤ $?

−2.5 if $ > $?

(3.5c)

with the gamma function Γ = (= − 1)!, � as the angle between the wind and

wave travel direction and s as a spread parameter.

Figure 3.6 shows the combination of a selected wave spectrum S($) and
the directional spreading function Dir ($, �)which returns the directional

wave spectrum [PP20]:

S($, �) = S($)Dir ($, �) (3.6)

3.2.2 The Fast Fourier Transform Approach

In [Tes01] Tessendorf describes how to synthesize a tileable surface patch

of ocean from a wave spectrum with the inverse FFT. Thus, to generate the

ocean surface in form of a square height field h(x , t) at a position x ∈ R2

and an absolute time t a finite number of wave components sampled in the

Fourier domain are added:

h(x , t) =
∑
k

ℎ̃(k , t) exp(8k · x) (3.7)
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For the height field to be a N × N grid of side length L, the wave vector

k =
(
kG , kH

)
also lies on a square grid, such that:

kG =
2�9G

L
with

−N
2

≤ 9G <
N
2

(3.8a)

kH =
2�9H

L
with

−N
2

≤ 9H <
N
2

(3.8b)

At time t, the Fourier amplitudes ℎ̃(k , t) are

ℎ̃(k , t) = ℎ̃0(k) exp(8$(k)t)
+ ℎ̃∗

0
(−k) exp(−8$(k)t)

(3.9a)

ℎ̃∗
0
(k) = ℎ̃(−k , t) (3.9b)

The given formulation of equation 3.9a allows using real instead of

complex numbers, therefore preserving the complex conjugation property

in equation 3.9b and yields a seamless tileable spatial patch [Tes01; Fré06].

This has the benefit of a reduced computation time by a factor of two [Fré06].

Following [Fré06] and [LeB+12], the Fourier amplitudes ℎ̃0(k) and in turn

the amplitude of a wave component a(k) are:

ℎ̃0(k) = a(k) exp(8!) (3.10)

where ! is uniformly random in (0, 2�]

a(k) =

√
− log(A) S

(√
gk, �(k)

) √
g
k3

Δk (3.11)

with Δk =
4�2

!2

and A is uniformly random in (0, 1]

Different versions of above equations can be found in literature either due to

different variations in random number usage or simply due to mathematical

restructuring. Equation 3.11 contains the directional wave spectrum from

equation 3.6 where any spectrum can be plugged in. Furthermore, the

dispersion relation for deep water from 3.1 is used because the spectrum

function’s angular wave frequency input $ takes the form of

√
gk.

3.2.3 Small Scale Details and Growing Complexity

A fundamental property of the FFT is that its input needs to be equally

spaced which is clearly the case according to previous definition of wave

vector k. Since the wave vector depends on the grid size N and the spatial

length L, the maximum angular frequency to sample the spectrum depends

on N and L as well. For a large spatial length, the grid size has to be

chosen accordingly to include high frequency waves with low wavelengths.
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Increasing N also increases the computational cost, and the complexity for

the FFT is O(N2
log N) [LeB+12].

Decreasing the grid size N together with the spatial length L allows the

sampling of high frequencies in the spectrumwith a low computational cost

for the Fast Fourier Transform. However, if the sampling interval is high

and the amount of sampled spectral densities is low, the sampled locations

are not equally spaced but shifted towards the high frequencies due to the

square root of the deep water relation. Finally, a small value for L means the

generated ocean tile is small. Since it will be repeated throughout spatial

domain, it exhibits visible repetition patterns.

3.2.4 Multi-Band Enhancement

To remedy these issues, LeBlanc et al.s [LeB+12] propose a multi-band

approach that consists of multiple low resolution FFTs with each sampling

different ranges of the used wave spectrum. This allows covering a wider

wave number range at a much lower computational cost and without visible

repetition pattern. A number of bands M are evaluated independently and

then added in spatial domain:

h(x , t) =
"∑
<=1

©­«
∑
k<

ℎ̃(k< , t) exp(8k< · x)
ª®¬ (3.12)

with L1 > L2 > . . . > L" and the banded wave vector k< made up of the

following components

k<G =
2�9G
L<

with

−N
2

≤ 9G <
N
2

(3.13)

k<H =
2�9H

L<
with

−N
2

≤ 9H <
N
2

(3.14)

To prevent overlapping bands, LeBlanc et al. suggest setting the wave

amplitudes a(k<) to 0 where k< ≤ (N�)/(L<−1) [LeB+12].
Their presented evaluation finds that the frame time of updating 4 bands

with grid size 64 × 64 is similar to a single 128 × 128 grid. Meanwhile, the

visual quality exceeds that of a 1024 × 1024 grid.

3.2.5 Multi-Spectra for Mixed Sea

Park and Park [PP20] use a somewhat similar multi-band approach with the

addition of using different directional wave spectra for multiple local wind

wave and swell systems. This allows modelling a mixed sea state which

is required by Park and Park for the realistic effect on ships in a real-time

maritime simulator.
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Figure 3.7: This image shows the combination of a single-banded swell sea with a

wind sea system split into 4 bands into a mixed sea state [PP20].

The outputs of multiple sea systems, each of which may be divided into

a few numbers of bands, are combined in spatial domain (see figure 3.7). For

each sea system, a main sampling range is defined around the spectrum’s

peak frequencywheremost of the energy is found. Swells are modelledwith

the JONSWAP-Glenn spectrum and wind sea with the JONSWAP spectrum.

To properly match bands to the spatial domain, i.e. the frequencies of the

band match the spatial resolution, Park and Park define L as a ratio of N and

the band’s maximum frequency f<0G :

L =
6N

4�f 2

<0G

(3.15)

3.2.6 Generating Surface Normals

Using just a height field to render the ocean surface makes the result

lacklustre. Therefore, surface normals need to be generated. Instead of

using a finite difference approach to approximate surface normals, they can

be derived directly by computing the surface’s gradient [Tes01] with two

additional FFT in a process called spectral differentiation:

∇h(x , t) =
∑
k

8 ℎ̃(k , t) exp(8k · x) (3.16)

A tangent to the surface is (1,0,∇hG)) , another is (0,1,∇hH)) thus, the surface’s
normal can be obtained by computing the cross product and normalizing

the result [LeB+12]. Here, the z-axis is the up-vector. When working with

multiple bands, their tangents can be added to obtain the combined surface

normal [LeB+12].

Regarding quality and efficiency, Tessendorf states that the finite differ-

ence approximation requires less memory but is inaccurate for waves with
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small wavelengths, while the slope vector computedwith the FFT is an exact

computation at the cost of additional FFT’s [Tes01].

3.2.7 Horizontal Surface Displacement

Without any further modifications, the height field produced by the FFT

approach shows very smooth and round crests just like the swell in figure 3.7.

For a swell, this is adequate, but waves of a local wind sea are bumpy with

sharp crests, especially in bad weather conditions [Bee97, p. 59; Tes01].

Tessendorf [Tes01] describes a way to create such choppy waves by

creating a vector J = (�G ,�H) that displaces the surface point horizontally
x + �3J(x , t) using two additional FFTs:

J(x , t) =
∑
k

−8 k
k
ℎ̃(k , t) exp(8k · x) (3.17)

The parameter �3 allows controlling the scaling of the displacement and

needs to be adjusted carefully since displacing the positions strongly can

result in the surface points intersecting themselves at the top of crests.

Besides sharpening crests and stretching troughs, this describes a circular

motion of waves which improves the realistic impression of the ocean’s

animation.

The displacing transformation of the surface point can be further used

to detect possible locations of breaking waves, spray or foam. Tessendorf

recommends calculating the following Jacobian matrix P(x , t) and its

determinant J = det(P) for said detection:

P(x , t) =
[
�GG �GH
�HG �HH

]
=


1 + �3

%�G(x , t)
%G

�3
%�G(x , t)

%H

�3
%�H(x , t)

%G
1 + �3

%�H(x , t)
%H

 (3.18)

Figure 3.8 shows the wave profile upon displacing surface points and its

effect on the Jacobian determinant. Using the Jacobian determinant with

some threshold function allows detecting sharp crests.

Correcting the surface normal

It is easy to imagine that displacing the surface to create sharp waves should

have an effect on the surface normal. Surprisingly, the only mention of such

a correction was found in the master thesis by Gamper [Gam18, p. 65] who

in turn mentions as a source the private communication with Jonathan

Dupuy and Eric Bruneton, from the latter comes the previously cited article

[BNH10].

Thus, the surface’s slope can be corrected using the �GG and �HH
components of the Jacobian matrix P. Transferred to the introduced notation
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      J > 1                     J > 0.3       J < 0.3       J < 0            

 

Figure 3.8: Illustration by Tcheblokov [Tch15] showing the effect of displacing the

surface point on the wave profile and associated values of the Jacobian

determinant J.

of tangents (1,0,∇hG)) and (0,1,∇hH)) in section 3.2.6, they can be corrected

as follows:

tG =
©­­«

1

0

(∇hG)/(�GG)

ª®®¬ tH =
©­­«

0

1

(∇hH)/(�HH)

ª®®¬ (3.19)

3.3 Simulating Shallow Water

To introduce the topic of shallow water simulation, the connection between

the Navier-Stokes and shallow water equations is presented, following the

book Fluid Simulation for Computer Graphics by Bridson [Bri08]. The Navier-

Stokes equations describe the motion of fluids. For an incompressible, fluid

they include the momentum equation 3.21 and the continuity equation 3.20

which expresses the incompressibility condition:

∇ · u = 0 (3.20)

%u
%t
+ u · ∇u + 1

�
∇p = g + �∇2u (3.21)

In these equations u is the velocity, � is the density of the fluid, p is the

pressure which the fluid exerts on its surroundings, and � is the kinematic

viscositywhich intuitivelymeasures howmuch the fluid resists deformation.

From a Lagrangian point of view, one can interpret the momentum

equation as different forces acting on a particle of the fluid. There is an

external force due to gravity, a force due to pressure differences and a force

due to viscosity thatmodels resisting deformations. A particle is able to carry

quantities through the fluid with the temperature as a good example. This
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3.3 SIMULATING SHALLOWWATER

movement of a quantity through the fluid’s velocity field is called advection.

Even if the temperature of a single particle flowing through the fluid does

not change, measuring the temperature at a fixed point in space may show

a change of temperature. The term (%u)/%t expresses the rate of change of
the quantity at a fixed point in space while the term u · ∇u describes how

much of that change is due to the fluid’s flow through that point. Here, the

quantity is not the temperature but the velocity itself.

Considering the strict requirements for a real-time gaming application,

numerically solving above equations in 3D for a large simulation domain

is still out of scope for current generation of hardware. Hence, lowering

the simulation dimension from 3D to 2D is crucial as it naively results in a

complexity reduction from O(=3) to O(=2).
The driving idea for the shallowwater equations is thatwater of relatively

small depth is primarily characterized by horizontal motion [Zho04, p. 10]

as there is simply not enough space for vertical motion to have a great effect

on the surface. Thus, any differences of forces along the fluid’s depth can

be neglected and vertical accelerations in the velocity field can be ignored.

Instead, the velocity is considered to be depth-averaged and expressed just in

terms of a horizontal velocity u ∈ R2
alongside the direct simulation of the

water’s depth d.
For theverticaldirectionof themomentumequation 3.21, this assumption

means that the pressure gradient and gravity are much higher than the

other terms which, therefore, can be dropped [Bri08, p. 170]. Applying the

boundary condition that the pressure p at the interface between the water

and the airequals the atmospheric pressure p0 , which can be set to 0, allows

for the pressure to be calculated directly [Zho04, p. 15]. This is called the

hydrostatic pressure approximation which saves the step of solving for

pressure [Bri08, p. 171].

Since the horizontal velocity u is depth-averaged, the advection of the

velocity in themomentumequation 3.21 is reduced to just twodimensions. In

addition there is an acceleration due to external forces like the gravity [Bri08,

p. 171] and the viscosity, if it is not dropped to model ideal inviscid fluids.

Instead of the vertical velocity, the depth of the water d will be simulated, i.e.

the depths’ rate of change and its advection by the horizontal velocity [Bri08,

p. 173].

The resulting shallow water equations again include the momentum

equation and continuity equation which may be written using Einstein’s

summation convention as in [Zho04]:

%d
%t
+
%(dD9)
%G 9

= 0 (3.22)

%(dD8)
%C
+
%(dD8D9)
%G 9

= −g %

%G8

(
d2

2

)
+ � %

2(dD8)
%G 92

+ �8 (3.23)
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Here, �8 combines several external forces including the bed shear stress �1
with a friction coefficient C1 or the slope of the seabed whose elevation is z1 :

�8 = −gd%z1
%G8
− �1 8

�
(3.24)

�1 8 = ��1D8
√
D9D9 (3.25)

To highlight the similarities between the shallow water and the Navier-

Stokes equations, they are written in vector notation:

%d
%t
+ ∇ · du = 0 (3.26)

%du
%t

= −(du · ∇)u − g∇d2

2

+ �∇2du + L (3.27)

L = −gd∇z1 −
31
�

(3.28)

31 = C1u ‖u‖ (3.29)

A comprehensible derivation of the shallow water equations can be

found in [Bri08] chapter 12 and a full mathematical derivation in [Zho04]

chapter 2. Differentnumericalmethodshavebeenproposed to solveprevious

equations, but this work focuses on the LBM.

3.3.1 Lattice Boltzmann Method for Shallow Water Equations

In general, the Lattice Boltzmann Method allows simulating different

macroscopic physical phenomena with a microscopic (to be precise, meso-

scopic [Moh19, p. 3]) model of particles moving and colliding with each

other on restricted lattice directions [Zho04, p. 33]. These particles can be

considered virtual particles, since their movement and interactions are of

statistical nature described by probability distribution functions. While the

LBM has been used to solve a wide array of problems in one, two or three di-

mensions, this work focuses on the 2D shallow water equations. Please refer

to Lattice BoltzmannMethod [Moh19] for an overview of possible applications.

Defining a lattice pattern

There exist different lattice patterns for the LBM which usually follow the

naming convention of DGQH with G for the dimension and H for the quantity

of lattice connections. Figure 3.9 shows the square D2Q9 pattern used in

this work, which Zhou suggests to use for increased accuracy and ease of

use [Zho04, p. 21]. The lattice defines the available movement directions of

particles and reflects to the spatial domain with a lattice size ∆x. For each of

the movement directions 8 ∈ [0, 8], there exists a particle velocity vector e8
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3.3 SIMULATING SHALLOWWATER

Figure 3.9: The streaming (middle) and collision operation (right) of the Lattice

Boltzmann Method are illustrated with the D2Q9 lattice. The grid

structure on the left shows that for each lattice direction the value

of the probability distribution function needs to be stored.

with e as the particle speed:

{e8} =
{(

0

0

)
,

(
4

0

)
,
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4

4

)
,

(
0

4

)
,

(
−4
4

)
,

(
−4
0

)
,

(
−4
−4

)
,

(
0

−4

)
,

(
4

−4

)}
(3.30)

Stream and collision step

The basic algorithm consists of two steps: the stream step and the collision

step [Zho04,p. 19]. During the stream step (see figure 3.9middle) each lattice

point moves its current particle distribution functions f8′ to the according

neighbouring lattice point, which in its most basic form excluding external

forces can be written as follows [Oje13a, p. 19]:

f8 (x + e8∆t, t + ∆t) = f8′ (x , t) (3.31)

The second step is the collision step (see figure 3.9 right), where the arriving

particle distribution functions at a lattice point collide as expressed by the

collision operator Ω:

f8′ (x , t) = f8 (x , t) +Ω8

(
f8 (x , t)

)
(3.32)

This collision operator is a very general description and different operators

exist, some of which may become very complicated and take the form of

a complex matrix [Zho19a]. The BGK collision operator (named after their

inventors Bhatnagar, Gross and Krook) is simple and efficient and, therefore,

widely used [Zho04; Moh19]:

Ω8 = −
1

�

(
f8 − f 4@

8

)
(3.33)

Here,� is the single relaxation timewhich is related to thefluids viscosity (see

section 3.3.1) and f 4@
8

is the local equilibriumdistribution functionwhichwill
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be explained shortly. Both streaming and collision step are usually written

as a single equation referred to as the Lattice Boltzmann equation:

f8 (x + e8∆t, t + ∆t) = f8 (x , t) −
1

�

(
f8 − f 4@

8

)
(3.34)

The local equilibrium distribution function

To actuallymodel the shallowwater equationswith above equation, the local

equilibrium distribution function needs to be defined properly. It is the core

of the method and other definitions can be used to model other equations,

for example the Navier-Stokes equations. For the SWE, the widespread

definition obtained from [ZL13] and rewritten in vector notation instead of

Einstein summation notation is:

f 4@
8
=


d
(
1 −

5gd
6e2

− 2u · u
3e2

)
, 8 = 0

�8d

(
gd
6e2

+ e8 · u
3e2

+ (e8 · u)
2

2e4

− u · u
6e2

)
, 8 ≠ 0

(3.35)

with �8 =

{
1 8 = 1, 3, 5, 7

1/4 8 = 2, 4, 6, 8
(3.36)

Adding external forces

So far external forces were omitted for the sake of clarity. Throughout several

works [Zho11; ZL13], Zhou refined the evaluation of forces and this work

adopts the latest notation from [Zho19b]:

f8 (x + e8∆t, t + ∆t) = f8 (x , t) −
1

�

(
f8 − f 4@

8

)
−

gd
e2

C8

(
z1 (x + e8∆t) − z1 (x)

)
+ C8

∆t
e2

e8 · L
(3.37)

with d = 1

2

(
d(x + e8∆t, t) + d(x , t)

)
(3.38)

and C8 =


0 8 = 0,

1/3 8 = 1, 3, 5, 7,

1/12 8 = 2, 4, 6, 8

(3.39)

In this definition, the seabed elevation is accurately embedded into the

equation with a semi-implicit form for d that saves deriving the seabed for

its slope [Zho11]. Thus, force term L just includes bed sheer stress,wind sheer

stress and Coriolis force due to earth’s rotation [ZL13]. However, only bed
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3.3 SIMULATING SHALLOWWATER

sheer stress 31 (see equation 3.29) is considered in this work since Coriolis

force has no great visual significance, and the wind interaction is modelled

by deep water which will be coupled to the LBM.

Calculating depth and horizontal velocity

Applying the steps mentioned up to this point evolves 9 distribution

functions of said virtual particles which all have to be stored per lattice

point (see figure 3.9 left). The final step to make practical use of them is to

calculate the macroscopic quantities of depth d and horizontal velocity u of

the Shallow Water equations:

d(x , t) =
∑

f8(x , t) (3.40)

d(x , t)u(x , t) =
∑

e8f8(x , t) (3.41)

⇒ u =
d(x , t)u(x , t)

d(x , t) (3.42)

Towards stable simulation

The Chapman-Enskog expansion can be used on the Lattice Boltzmann

equation 3.37 to prove that the calculatedwaterdepth andhorizontal velocity

are a solution to the shallow water equations 3.26 and 3.27. This proof is not

repeated in this work as it is already presented in [Zho04] and [Zho11] in

detail. The proof unveils that the kinematic viscosity � of the fluid is defined

by:

� =
e2∆t

6

(2� − 1) (3.43)

According to Zhou, in general the method is numerically stable when it

satisfies four conditions [Zho04]:

� >
1

2

(3.44)

u · u
e2

< 1 (3.45)

gd
e2

< 1 (3.46)

Fr =
√
u · u√
gd

=
u · u
gd

< 1 (3.47)

The relaxation time condition ensures the kinematic viscosity to be positive.

Then, neither the magnitude of velocity nor the celerity

√
gd (see the shallow

water approximation for the dispersion relation in equation 3.1) can exceed
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the particle speed. And lastly, the flow needs to be subcritical, as expressed

by the Froude number Fr < 1.

Still, for very small viscosities, usually due to the single time relaxation

having values close to its limit, the method can become numerically

unstable [Zho19a]. Several improvements have been proposed to remedy

this issue. Zhou suggests using a Smagorinsky sub-grid model which

enables simulating the flow at an eddy viscosity independent of the fluids

characteristic kinematic viscosity, which is adopted by [Oje13a]. Other

approaches like Two-Relaxation-Time Scheme or Multi-Relaxation-Time

scheme modify the collision operator [Moh19, p. 145–149] but come with

an increased computational cost [Zho19a].

The key observation regarding stability is its connection to the collision

operator 3.33. Recently, Zhou proposed a simplification of the Lattice

Boltzmann equation that allows to remove the collision operation by setting

the single relaxation time � to 1. As a result, the stability requirements are

clearly defined and the macroscopic properties of depth and velocity can

be used directly. Both are promising advantages for the usage in context of

computer graphics.

3.3.2 Macroscopic Lattice Boltzmann method for SWE

To get to a macroscopic formulation of the LBM, the Lattice Boltzmann

equation needs to be rewritten following [Zho19b]. For the sake of clarity,

equation 3.34 will be used as basis in this work rather than equation 3.37

since the force related terms can be taken over. Rewriting equation 3.37

yields:

f8(x , t) = f8(x − e8∆t, t − ∆t)

− 1

�

(
f8(x − e8∆t, t − ∆t) − f 4@

8
(x − e8∆t, t − ∆t)

)
(3.48)

The purpose of the collision is the relaxation of the local particle distribution

function towards its local equilibrium [Zho19a]. By setting the single

relaxation time � to 1, this relaxation reduces to the local equilibrium

distribution function itself:

f8(x , t) = f8(x − e8∆t, t − ∆t)

−
(
f8(x − e8∆t, t − ∆t) − f 4@

8
(x − e8∆t, t − ∆t)

)
f8(x , t) = f 4@

8
(x − e8∆t, t − ∆t) (3.49)

Equation 3.49 is solely based on the physical variables of velocity and depth

instead of requiring particle distribution functions of previous time steps.
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Reintegrating the force terms yields:

f8(x , t) =f 4@
8
(x − e8∆t, t − ∆t)

− C8

gd
e2

(
z1(x) − z1(x − e8∆t)

)
+ C8

∆t
e2

e8 · L

(3.50)

Parametrization under the absence of collision

The absence of the collision operation reduces the eddy viscosity � to just:

� =
e2∆t

6

(3.51)

To regain some level of control over the viscosity, Zhou suggests determining

the particle speed e in terms of � and ∆x with the time step ∆t depending on

∆x and e, such that:

∆t = ∆x
e

⇒ � =
e∆x
6

⇒ e = 6�
∆x

(3.52)

Thus, for a given viscosity � the only parameter required to control the

simulation is the lattice size ∆x.

Stability conditions and evaluation

Previous established stability conditions (see 3.3.1) remain intact, naturally

with the omission of the one regarding the single relaxation time. Addi-

tionally, Zhou finds that the Lattice Reynolds number must be less than

1 [Zho19a]. The Reynolds number can be used to predict if a flow is laminar

or turbulent [Bee97, p. 181] and is defined as [Moh19, p. 108]:

Re = * !

�
(3.53)

Here, * and ! are the flow speed and spatial length in macroscopic

scale [Moh19, p. 108]. The Lattice Reynolds number on the other side is

defined for the lattice and for the macroscopic LBM can be written as

follows [Zho19a]:

ReL =
* ∆x
�

(3.54)

The only option to match a flow Reynolds number on the lattice with the

simulation staying stable is, to increase the grid size n because the relation
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is n = !/(∆x). Taking * as the maximum flow speed, the limit ReL < 1 can

be written as a limit on velocity u:

√
u · u∆x

�
< 1 (3.55)

Here, the fundamental limitation arises that forhighvelocities ora small eddy

viscosity, the lattice size ∆x becomes very small upon satisfying the stability

conditions. Thus, to simulate a large spatial domain or a high Reynolds

number, the required grid size n quickly becomes unsustainable. Further

discussion of problems due to stability conditions and the parametrization

alongwith a proposal on how to deal with them can be found in section 4.2.1.

The prevalent upside of the macroscopic LBM is the direct usage of

the macroscopic physical quantities. From a programming perspective, it

naively reduces the memory usage from 9 floating-point values to just one

for depth and two for the horizontal velocity. It also spares the definition of

boundary conditions in terms of particle distribution functions since they

can be directly applied to the physical quantities [Zho19b].

3.4 Surface Mesh

Multiple height fields are the result of deep water simulation, whereas the

shallow water simulation outputs depths that need to be combined with

the seabed elevation to obtain heights. Both results need to be sampled in

some way to render the ocean surface. For real-time applications a mesh-

based approach is the typical choice. While the primary view is a top-down

perspective, occasional close-up views including a visible horizon need to

be supported as well.

During development, a simple uniform grid was used as a starting point,

but it clearly is unsuitable for a large scale ocean. Hence, some kind of

spatially adaptive technique needs to be employed. Spatial data structures

or mesh refinement techniques to increase mesh resolution in regions of

interest are promising but complicate the implementation. The projected

grid concept of Johanson [Joh04] is a rather tempting and widely adopted

idea due to the prospect of having a naturally adaptive grid restricted to the

camera frustum.

3.4.1 Algorithm of the Projected Grid

The core idea of the projected grid approach is to define a uniform

grid in screen space and project it onto the horizontal plane in world

space. The algorithm is now presented at a high level with the help of

figures 3.10, 3.11 and 3.12. Please refer to [Joh04] for mathematical details.

First and foremost a basis seaplane (see figure 3.10) needs to be defined

that matches the sea level at rest. A grid will be projected on this plane with
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3.4 SURFACE MESH

Figure 3.10: The intersections between the frustum’s edges and the upper and lower

seaplane aswell as the frustum corner point inside the spannedvolume

are projected onto the basis seaplane.

the grid points as the vertices of a mesh. Values of the height field will be

used to offset these vertices along the seaplane’s up facing normal. Without

precautions, this displacement may result in edges of the mesh being visible

inside the camera’s frustum. Therefore, two more planes above and below

the basis seaplane are defined at a distance matching the maximum possible

displacement of the sea surface.

Using the frustum’s corner points in world space coordinates, the

intersections of the frustum’s edges with the upper and lower seaplane

are calculated. Together with corner points lying inside the volume spanned

by both planes, they are projected onto the basis seaplane as depicted in

figure 3.10).

Some camera views raise issues, for instance, if the view direction is

parallel or pointing away from to the plane or if the projection of the seaplane

intersects the near plane. Johanson suggests using a second adjusted camera

for the upcoming projection, called the projector [Joh04]. A suitable projector

can be found by ensuring its location stays above the upper plane and its

direction faces the seaplane. Figure 3.11 shows a possible projector for the

used camera.

Figure 3.11: The obtained points from figure 3.10 are projected into screen space of

a projector camera. In this space the minimum and maximum can be

determined.
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Once the projector is found and its view and projection matrices

calculated, all the world space points previously projected on the seaplane

are then projected into the projectors screen space. As depicted in figure 3.11,

this step is required to find the screen space minimum and maximum in

terms of the points’ G and H components. Projecting them back into world

space yields the minimum and maximum coordinates of the grid.

Figure 3.12: By projecting the screen space grid points back to world space the

projected grid is obtained. Its world space coordinates are displaced

according to the height field.

How to use the found minimum and maximum points is a question

of implementation. Johanson uses them to create a conversion matrix

for DE-coordinates. In this work, the projected homogeneous world space

coordinates for the grid corners are instead used for interpolation. It should

be noted that both methods use homogeneous world space coordinates as

it is fundamental for the resulting grid to be uniform in screen space. Thus,

after obtaining the homogeneous grid points on the projectors view plane

the perspective division moves them on the seaplane. Figure 3.12 displays

this step followedby the displacement along the seaplane’s normalweighted

with heights obtained by sampling the height field. It can be seen that the

resulting mesh rendered by the original camera lies completely inside its

frustum.

3.4.2 Problems of Projected Grid Approach

The major problem of the projected grid approach is the swimming artefact.

It can be easily thought of by considering the camera in figure 3.12 moving

horizontally. As the world positions of grid points move with the camera,

different height values are sampledwhichwere not represented by the mesh

previously. This gets worse, the further away samples are taken.

To properly define the upper and lower bound of the seaplane, the max-

imum height offset has to be known. Additionally, horizontal displacement

as obtained by the FFT approach is not considered.
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If the camera is inside the spanned volume, the projector quickly ends up

being repositioned in a way that the resulting grid approaches a rectangular

shape in world space [Joh04]. In this case, the benefit of closely matching

the mesh to the frustum is lost.

3.4.3 Possible Improvements

Bruneton, Neyret, and Holzschuch [BNH10] use the projected grid in

combination with three different surface detail levels. Displacement to the

surface is onlyappliedclose to the camera andfadedoutata certain threshold.

Normals are faded out further away while lighting with a BRDF is faded

in simultaneously. This renders the swimming artefact less visible but does

not eliminate it.

Figure 3.13: Polar meshing improvement (left) proposed in [Bow13] compared to

standard projected grid (right).

A more sophisticated approach to fight the vertex swimming is pre-

sented at Special Interest Group on Graphics and Interactive Techniques

(SIGGRAPH) 2013 by Bowles [Bow13]. It is suggested to arrange the vertices

in a circle around the camera and snap the rotation angles. Thus, vertex

positions stay fixed during rotation which does not hold true for the stan-

dard projected grid (see figure 3.13). To fix vertices during a forwardmotion,

Bowles proposes a split-and-merge scheme inspired by a quad tree compres-

sion [Bow13]. However, it stays impossible to fix vertices during sideways

camera motions.

Kryachko presents findings on the projected grid approach from the

development of the video gameWorld of Warships (2015) during SIGGRAPH

2016 [Kry16]. Thus, increasing the vertical mesh resolution and adding

randomness to the grid vertices is an improvement but the swimming (here

called shaking) artefact remains noticeable. In the end, Kryachko opts to use

the projected grid only as an initial approximation which is refined with

height field ray casting on a per pixel level [Kry16].
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Developmentwasdone inEpicGames’ UnrealEngine (UE) ofversion 4.25. UE

provides an abstraction layer for multiple graphic application programming

interfaces (APIs) called the Render Hardware Interface [Epi] which mostly

follows the terminology ofDirect3Dwith shader code written in High Level

Shading Language (HLSL). This work’s implementation is presented from

a functional point of view without any UE specifics. It shall be mentioned

that UE’s deferred rendering pipeline was used and graphical commands

are queued into a command list which is translated to Direct3D 12 rendering

commands one frame later [Epi].

Throughout this work the acronyms central processing unit (CPU) and

GPU are used to indicate whether work is performed by the host or the

device respectively.

Figure 4.1 shows aflowchartof the implementation split inCPUandGPU

work and a highlighting of the five main features: deep water simulation,

shallow water simulation with LOD system, projected grid surface mesh,

simulation output combination and ocean-object interactions.

Deep water simulation employs a multi-band and multi-spectra FFT

approach and is fully implemented on the GPU, including the sampling of

wave spectra.

Simulation of shallow water is done with the LBM. A theoretical

description of a LOD system is proposed, and details on a possible

implementation are presented. Additionally, the plausible coupling of the

deep water FFT approach with the shallow water simulation is shown.

The macroscopic simulation of physical quantities allows the interaction

of rigid bodies with the shallowwater simulation in an efficient and straight-

forward manner. Reading back the buoyant force from the GPU to the CPU

is implemented in a non-stalling way. Obtained forces are forwarded to the

engines physics system.

While UE deals with the rendering of the ocean surface, an emphasis is

put on combining the great amount of simulation outputs due the shallow

water LOD system and the multi-band, multi-spectra FFT approach.

The surface mesh is created using a version of projected grid approach

with a proposal to reduce the swimming artefact.
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Combine Simulation Outputs

If any Sea System is dirty

If LOD Layers changed

If LOD Alignment changed

If Ocean Surface is visible

If Readback is available

Update Fourier Amplitudes

IFFT Horizontal Pass

IFFT Vertical Pass

Setup new LOD Layer

Upload Sea System Buffer Data

Process Physic Objects

Upload Physic Buffer Data

Get Readback Data

Update Projected Grid

Update Shallow Water LOD

Find intersecting Physic Objects 

Request next GPU Readback

xN

Realign changed LOD Layer

Simulate LOD Layer Substep

xN

xN

Combine Heights and Normals

Update Mesh Vertices

Update Shallow Water Model

Write forces to Readback Buffer

Render Ocean

Apply forces to Objects

Figure 4.1: High level overview of the implementation.
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4 IMPLEMENTATION

4.1 Simulating Deep Water

The presented deep water simulation is based on Park and Park’s multi-

spectra approach to model different wave systems [PP20] and LeBlanc

et al. multi-band approach [LeB+12]. In addition, own insights and

recommendations on moving most of the work to GPU and modifying

the sea state at runtime are contributed.

4.1.1 Controllability

To render the approach useful and interesting in a game environment, it

has to offer the possibility of modifying the sea state at runtime naturally

without showing hard transitions. For some parameters, this means special

care has to be taken, e.g. changes of wind speed may alter wave heights

but not reveal the tiling of height fields. This has implications on spectrum

sampling and is shown in section 4.1.2. Other parameters cannot be changed

at runtime either because it is impossible to achieve smooth transitions

or due to technical reasons. In the context of this work, former are called

dynamic parameters and latter static parameters.

Impact of parameters on performance

Regarding performance and memory requirements, three crucial aspects

are important. First, the size of the Fourier grid N that directly translates to

the height field texture size. Secondly, the amount of sea systems and the

number of frequency bands they consist of. Finally, the types of features

which are required for bands of the sea systems. These features include the

generation of normals either by spectral differentiation or central differences

and horizontal displacements. It is advisable to allow choosing features on a

per-band basis because for example low frequency swells have round crests

thatdonot require to bedisplaced. All these options are staticparameters and

fixed at start-up. In section 5.1.1 a closer look at their impact on performance

can be found.

Wave spectra parameters

As in [PP20], two spectral functions are supported. The JONSWAP spectrum

is controlled with the wind speed U and wind fetch F. Depicting certain

weather conditions may be facilitated by using the Beaufort Scale as reference.
With the peak period T? and the significant wave height Hs, the JONSWAP-

Glenn spectrum describes the sea state in a more direct way and is suited

to control the low frequency swell in particular. Both spectra are combined

with directional spreading on a per sea system basis, controlling the wave’s

propagation direction with the help of a wind direction uF .
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4.1.2 Sampling Wave Spectra

As introduced in section 3.2.2, the FFT requires time-dependent amplitudes

ℎ̃(k , t) which in turn require time-independent amplitudes ℎ̃0(k). Latter
ℎ̃0(k) do not change with time and can be calculated, stored and used

until parameters of the directional wave spectrum S, the gravity g or the

wave vectors k change. Wave vectors k define the sampling locations of the

spectral densities with the dispersion relation

√
gk, therefore, their definition

is fundamental. In order to choose the wave vectors, the spectra itself need

to be taken into account, as their graphs vary with the change of parameters.

The problem of run-time sampling

Both JONSWAP and JONSWAP-Glenn spectra use a peak frequency $? or

f? expressing where the graph’s peak is located. It depends on the spectrum

parameters such that:

$? = 22

(
g2

U10F

)
1/3

(4.1)

f? =
1

T?
(4.2)

As most energy exists around this peak, Park and Park suggest choosing the

main sampling range in its vicinity with an upper bound at 2.5f? [PP20].

LeBlanc et al. choose a fixed upper bound for the highest frequency band

matching the wave length of 12 cm and a multiple of the peak frequency for

the lowest frequency band. Both share the same problem that arises when

the peak frequency is changed at runtime. Changing the peak frequency

stretches or compresses the graph horizontally. Describing the sampling

range in dependence on the peak frequency results in the unnatural

animation of the ocean’s surface height field obtained with the FFT. Reasons

for this are the non-fixed sampling locations and the dependency of the

height field’s spatial length on the sampling range. Park and Park recognize

the problem of changing the sea state at runtime and suggest keeping the

period and phase stationary in Fourier domain [PP20]. However, no further

details on how to achieve this are given.

Band division and fixed spectrum sampling

Thiswork’s proposed solution to the sampling problem is to fix the sampling

range and locations at start-up. Thus, two sets of parameters are defined

for each spectrum. The dynamic wind speed U, dynamic wind fetch F,
dynamic peak period T? and dynamic significant wave height Hs can be

modified at runtime. The static wind speed Ust
, static wind fetch Fst

, static
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Figure 4.2: Fixedspectrumsamplingwhere thegraphwith thehighestpeakmatches

the static peak frequency. With �s = 0 Band 1 exactly aligns with the

spectrum’s peak because pL = 1. Band 2 to Band 6 sample the spectrum

up to fU with an equal distribution of samples. The graphs with lower

peaks differ in their dynamic peak, however, due to the fixed sampling

strategy the sampling locations are identical. Note that overlapping

samples were removed.

peak period Tst

? and static significant wave height Hs
st

are fixed at start-up,

and used to determine the sampling range. Additionally, three parameters

to control the distribution of the frequency band’s sampling intervals are

introduced: The peak sampling enhancement factor �s, the upper bound

peak frequency factor pU and the lower bound peak frequency factor pL. The

static peak angular frequency $st

? and static peak frequency f st

? are:

$st

? = 22

(
g2

Ust

10Fst

)
1/3

(4.3)

f st

? =
1

Tst

?

(4.4)

Here, frequencies f and angular frequencies $ are only used to distinguish

JONSWAP from JONSWAP-Glenn. The relation $ = 2�f can be used for

conversion.

Next, a lower bound fitting factor ffit and upper and lower bound
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frequency fU , fL are introduced.

fU = pU ∗ f st

? (4.5)

fL = pL ∗ f st

? (4.6)

ffit =
1

N

(
pL

pU

) (−2)/(M−1)
(4.7)

Using these, the goal is to find the minimum and maximum frequency for

each band < ∈ [1,M] with M > 1 where band < = 1 covers the lower

frequencies and band < = " the highest. Starting with f max

"
= fU, they are

defined recursively by:

f max

<−1
= f min

< (4.8)

f min

< = f max

< (Nffit�)−1/2
(4.9)

� = 1.0 + �s ∗max

(
0,

fL − f max

< (Nffit)−1/2

fL − fU

)
(4.10)

In the simplest case of �s = 0, this results in f max

1
= fL with bands 1 < m ≤ "

covering the interval [fL , fU] each with approximately the same of amount

of unique sample locations (see figure 4.2).
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Figure 4.3: The graph shows sampling bounds shifted towards the left with �s = 4.

At the same time the lower bound peak frequency factor was increased

pL = 1.5 to counteract the left shift leading to an increased sample

density at the peak.
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Increasing �s shifts the band’s sampling bounds towards the origin and

is meant to increase the sampling density around the peak (see figure 4.3).

Unfortunately, the property of f max

1
= fL is lost in the process rendering the

placement of samples less intuitive. The increased sampling density also

comes at the cost of a reduced number of unique non-overlapping samples.

In both spectrum plots overlapping samples were removed if f < f min

< .

Their contribution can be removed during creation of Fourier amplitudes

ℎ̃0(k) by setting their amplitudes to 0 [LeB+12]. In practice, this means, a lot

of time is spent on samples that do not have any contribution at all. This is a

fundamental difficulty of the multi-band approach because the FFT requires

equally distributed samples. Not removing lower band contributions in

overlapping sampling areas means over representing low frequencies. For

this work, lower band contributions were not removed as the results were

satisfying. However, a more in-depth comparison and evaluation of this

difficulty should be conducted in future works.

Calculating wave vectors

With a spectrum sampling strategy in place the matching wave vectors

need to be calculated on the N ×N grid. As shown before in equation 3.8a,

Tessendorf’s definition for k =
(
kG , kH

)
is:

kG =
2�9G

L
with

−N
2

≤ 9G <
N
2

(4.11)

kH =
2�9H

L
with

−N
2

≤ 9H <
N
2

(4.12)

Following Park and Park, the spatial length L only depends on a bands

maximum frequency f max
[PP20]. In preparation of theGPU implementation,

a restatementpreferring amultiplication is suggested. Additionally, thewave

vector’s components are rearranged as required by the FFT:

$max

< = 2�f max kmax

< =
1

g
$max

<
2

(4.13)

L< =
gN

4�f max

<
2

Δl< =
L<
N

(4.14)

�:< =
√

2 ∗ kmax

<

N + 1

�(9) =
{

N, if 9 ≥ N/2
0, if 9 < N/2

(4.15)

k<G = �:<(9G − �(9G)) with 0 <= 9G < N (4.16)

k<H = �:<(9H − �(9H)) with 0 <= 9H < N (4.17)
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4.1.3 GPU implementation

To reduce the amount of data passed from CPU to GPU to a minimum,

both sampling the wave spectra and the FFT is done on the GPU. Figure 4.4

gives an overview of the three involved compute shaders and the texture

resources. Updating time-independent Fourier amplitudes is only done

when necessary. The Fast Fourier Transform is split in a horizontal and

vertical pass and done every frame.

Updating time-independent Fourier amplitudes

During the Fourier amplitude update, three buffers are required: One to

hold relevant parameters of sea systems, another one for parameters that

are unique per band and finally, an index buffer to map the dispatch’s I

index to preceding buffers. Amplitudes and wave vectors are written into

a N × N Texture2DArray with M slices, one for each band. Here, M
is the number of total bands of possibly multiple sea systems. JONSWAP

and JONSWAP-Glenn are quite similar, hence, the identification of a band’s

spectrum type is only required once when sampling the spectrum. For this

purpose, the sea system parameter buffer holds the spectrum’s type. No

further difficulties arise on implementing the spectral functions S($) on the

GPU, but it is naturally recommended to pre-calculate whatever possible.

The directional spreading function Dir ($, �) (3.5a) needsmore attention

because it contains the gamma function Γ = (= − 1)!. Here, the Lanczos ap-

proximation [Lan64] is used since its implementation is straight forward and

it is very efficient to compute, depending on the choice of coefficients. Using

just 4 coefficients obtained from [Totnd] with 6 = 3.65, the simplified HLSL

implementation in listing 4.1 was derived, based on code from [Mun20]. It is

reasonable to compute on the GPU, and a visual comparison of the proposed

approximation with Octave’s gamma function shows no differences which

is a sufficient mark of quality for the context of this work.

1 float LanczosGammaApproximation(float s)
2 {
3 const float coefficients[4] =
4 { 2.50662846, 41.41740453, -27.06389249, 2.23931796 };
5 float lanczosSum = coefficients[3] / (s + 3.0);
6 lanczosSum += coefficients[2] / (s + 2.0);
7 lanczosSum += coefficients[1] / (s + 1.0);
8 lanczosSum += coefficients[0];
9 float z = s - 1.0;

10 float gamma = 0.0395155 * lanczosSum;
11 gamma *= pow(0.367879, z);
12 gamma *= pow(z + 4.15, z + 0.5);
13 return gamma;
14 }

Listing 4.1: A Lanczos Gamma approximation with just 4 coefficients is used to

calculate directional spreading in a compute shader.
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Figure 4.4: Time-indepenent fourier amplitudes are updated whenever needed

(left). In a first pass (middle) they are used for a inverse FFT applied

horizontally. The second vertical pass (right) yields the output:

outm ∈
{
h(x , t),∇h(x , t)G ,∇h(x , t)H , �G(x , t), �H(x , t)

}
Any random numbers in the remaining process of creating ℎ̃0(k) (see

equation 3.10) need to be generated pseudo-randomly such that they stay

fixed on every update. Finally, the time-independent amplitudes are stored

in the red and green channel of the band’s texture slice and wave vectors

in the blue and alpha channel. It has proven to be sufficient using 16 bit per

channel.

Two-pass Fast Fourier Transform

A GPU based Stockham FFT is employed that uses shared memory to allow

transformation of two signals per thread group. The implementation is

part of Unreal Engine and based on the paper [Gov+08]. Govindaraju et al.

present several possible algorithms and thoroughly compare them [Gov+08].

Its review is not subject of this work.

The first pass applies the inverse FFT horizontally and the second pass

vertically. This produces the three possible outputs of height, slope or

displacement for M bands (see figure 4.4). Two texture arrays are required

in the process. Their number of slices is chosen according to the number of

outputs, taking into account that a single slice can hold the output of two

transformed signals.

During the first pass, the time-independent Fourier amplitudes andwave

vectors are read and used to calculate the time-dependent amplitudes. Here,

the output type needs to be considered to transform them according to
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4.2 SIMULATING SHALLOWWATER

equation 3.12, 3.16 or 3.17. A buffer that maps the dispatch’s I index to the

output typeof the two involvedbands allows identification. The intermediate

results of thehorizontal transformation arewritten to an intermediate texture

array. The second pass reads those intermediate results, applies the inverse

FFT vertically and writes the final result to a second texture array.

The example depicted in figure 4.4 involves 8 bands. As suggested, the

desired output type can be controlled on a per-band basis. For each band

both heights and normals are enabled. Thus, 4 texture slices are needed for

the height outputs and 8 texture slices for their slope. Only 2 bands have

displacement enabled. Therefore, two more texture slices are sufficient. This

adds up to 14 N × N texture slices that are updated every frame. If the

imaginary part of the output is not required, it should be dropped during

the vertical pass to reduce the amount of texture slices (see suggestions in

section 5.1.1).

4.2 Simulating Shallow Water

For the practical use of the LBM, it is of utmost importance to get a deep

understanding of the parameters involved. They are directly connected to the

stability of themethodand essentially definewhat problem can be simulated.

This is even more important for the macroscopic Lattice Boltzmann method

since the only adjustable parameters left are the eddy viscosity � and the

lattice size ∆x, with everything else written in its dependence.

At the risk of repeating, the model’s parametrization is introduced, its

implications are elaborated, and it is proposed how to handle and utilize

them.

4.2.1 Parameter Clarification

For an eddy viscosity � and lattice size ∆x, both the particle speed e and time

step ∆t are defined in dependence:

e = 6�
∆x

(4.18)

∆t = ∆x
e

(4.19)

Stability is givenwhen the simulated quantities of depth d andhorizontal
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velocity u satisfy the conditions introduced in section 3.3.1 and 3.3.2:

√
u · u
e

< 1 (4.20)√
gd
e

< 1 (4.21)

√
u · u√
gd

< 1 (4.22)

√
u · u ∆x

�
< 1 (4.23)

In terms ofpractical use, the lattice size∆x translates to the spatial domain

in combination with a grid size n to the spatial length l = ∆xn. The real-time

requirement prevents arbitrarily increasing n. Thus, for a given grid size n,
the lattice ∆x should be chosen to span the desired simulation domain.

Equation 4.21 sets a limit on the depth of the simulated water. Since

the goal is to employ the shallow water simulation in the context of an

ocean simulation supplementing missing features of the FFT approach, it

is desired to control the simulated depth to one’s liking. Using the particle

speed definition 4.18, the stability condition 4.21 and a desired depth d3 that
can be simulated, the eddy viscosity � can be chosen in accordance:

1 >

√
gd3
e

⇒ 6�
∆x

>
√

gd3

⇒ � >
∆x
6

√
gd3 (4.24)

With some basic algebra, it can be found that the stability condition 4.23 is

stricter than 4.20. For the velocity this results in:

√
u · u
e

< 1 ⇒
√
u · u <

6�
∆x

√
u · u∆x

�
< 1 ⇒

√
u · u <

�
∆x

⇒
√
u · u <

√
gd3
6

(4.25)

In summary, for the simulation to be stable, the simulated water depth

d must be less than d3 for stability condition 4.21 to be satisfied, and the

velocity u must satisfy both 4.22 and 4.25. The lattice size is chosen to span

the desired simulation domain for a given grid size, and the eddy viscosity

is chosen to allow simulation of a certain desired depth d3.
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4.2 SIMULATING SHALLOWWATER

4.2.2 Implications of the Parametrization

While this allows to set up the stable simulation of a certain scenario, it has

several implications.

For one, instead of freely choosing the eddy viscosity �, it is calculated
to support the given scenario. It is important to remember that the eddy

viscosity is not some value directly used by the model, rather the model

depicts a certain eddy viscosity. When the lattice size ∆x is doubled, the new

smallest vortex the lattice may exhibit is twice of the size. Thus, it is logical

that the lattice size ∆x is part of the eddy viscosity definition 4.24.

Next, the neighbourhood in the LBM equation is evaluated: f 4@
8
(x −

e8∆t, t − ∆t). Looking at equation 4.18 and 4.19 it is clear that e8∆t is exactly
a neighbouring lattice point. From the implementation’s perspective this

is very beneficial, as a simple load operation without interpolation can be

used. Finally, the time step 4.19 is fixed and depends on the lattice size and

the particle speed.

# l [m] n d3 [m] ∆x [m] � [m2
s
−1] e [m s

−1] ∆t [s]
1 256 512 4 0.5 0.522 6.2642 0.0798

2 512 512 4 1.0 1.044 6.2642 0.1596

3 1024 512 4 2.0 2.088 6.2642 0.3193

4 4096 512 4 8.0 8.3522 6.2642 1.2771

5 256 512 32 0.5 1.4765 17.718 0.0282

6 512 512 32 1.0 2.953 17.718 0.0564

7 1024 512 32 2.0 5.9059 17.718 0.1129

8 4096 512 32 8.0 23.624 17.718 0.4515

Table 4.1: This comparison of different values for l,n,d3 shows the effect on

dependent values for ∆x, �,e,∆t.

With the help of table 4.1, more practical observations can be shown.

Lattice size, eddy viscosity and time step grow at the same rate, so doubling

the lattice size ∆x also doubles the time step. For certain scenarios, the time

step ∆t gets very small or large. Considering a frame rate of 60 frames per

secondwith a frame time of ∼0.16 s, running the simulation with a time step

of 1.2771 s as in row 4means it runs too fast. On the other hand, row 5’s time

step 0.0282 s would be too slow. Both cases need some closer examination.

Due to the ambitious performance requirements, it is not possible

to increase the amount of simulated time steps per frame. Instead, the

assumption is made that it is acceptable for the time step to be smaller

than the frame time. Intuitively, this can be justified by waves on a puddle

moving in slow motion appearing larger than they actually are. Another

example is the use of small scalemodels in filmmaking and even in scientific

applications before powerful computers were available.
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Clearly, there are less performance concerns aboutdecreasing the amount

of simulated time steps per frame.However, it shouldbe avoided todistribute

work unevenly throughout frames to prevent introducing spikes in frame

time.

4.2.3 Level of Detail Scheme

The presented analysis of the parameters, stability conditions and their

implications are now used to formulate of a LOD scheme.

Multiple layers of simulation lattices are stacked on top of each other as

depicted in figure 4.5. All are of the same resolution n×n, but the lattice size
∆x is doubled for every layer. When centred around a single point in space

like the camera position, a large area can be covered while preserving small

scale details in camera vicinity. The identical resolution of layers allows for

an efficient memory layout, for instance, the usage of texture arrays on the

GPU.

To evenly distribute the workload of lower detail layers with high time

steps, a sub-stepping approach is introduced. Instead of processing the

whole simulation domain just every other frame, it is halved into a sub

domain for every lower detail layer and switched through. When the highest

level of detail layer is processed in its entirety for every frame, the amount

of lattice points being processed per frame converges to 2n2
upon increasing

the number of layers (see figure 4.5). Obviously, there is a limit on howmany

layers can be added this way depending on the choice of n.
To formalize this, let o be the index of a LOD layer, where o = 0 has

the highest level of detail and, therefore, the lowest spatial length. Most

importantly, for o = 0 the minimum lattice size is defined ∆x0 = ∆xmin and

subsequently ∆xo+1 = 2 ∗ ∆xo. Both the resolution n and the number of sub

Figure 4.5: Several layers of equal resolution are stacked on top of each other around

a centred point. Their spatial side length grows quadratically allowing

a large area to be covered. With every layer the simulation domain is

halved into increasingly smaller sub domains as shown in the bottom

right.
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steps MBD1
of a layer are required to be a power of two. Using a user-defined

target or average frame time Δt 5 , the number of sub steps MBD1
0

is the closest

non-zero power of two of ∆t/(Δt 5 ). Thus, time steps less than the frame time

are still simulated once per frame, but time steps higher than the frame time

are slowed down by using more sub steps. In any case, the number of sub

steps for the next lower layer is always doubled MBD1
o+1

= 2 ∗MBD1
o in order

to match the timing of layers. An intuitive way to interpret MBD1
is that a

simulation layer is completely simulated after MBD1
frames passed.

Given a minimum side length of a subdomain nmin ≥ 1, the maximum

amount of sub steps and in turn the highest LOD layer index can be

calculated:

MBD1
omax

= ( n
nmin

)2 (4.26)

omax =

log
2

(
MBD1

omax

MBD1
0

) (4.27)

Table 4.2 shows the values for a specific example. Here, the proposed

LOD scheme allows simulating at an lattice size of 0.125 m at the highest

detail level and covering an area of 1310.73 km for the lowest detail level.

o l [m] ∆x [m] � [m2
s
−1] ∆t [s] MBD1

0 128 0.125 0.18456 0.01411 1

1 256 0.25 0.36912 0.02822 2

2 512 0.5 0.73824 0.05644 4

3 1024 1.0 1.4765 0.11288 8

4 2048 2.0 2.9530 0.22576 16

5 4096 4.0 5.9059 0.45152 32

6 8192 8.0 11.812 0.90305 64

7 16284 16.0 23.480 1.7951 128

8 32768 32.0 47.247 3.6122 256

9 65536 64.0 94.495 7.2244 512

10 131072 128.0 188.99 14.449 1024

Table 4.2: Listing all layer dependent values for given n = 1024, nmin = 32, d3 =
16 m, ∆x0 = 0.125 m,Δt 5 = 0.166 s. With MBD1

omax

= 10, there are a total of

11 layers with a constant lattice speed of e = 8.8589 m s
−1
.

Layer boundary conditions

The boundary treatment between layers for the proposed arrangement of the

layers in figure 4.5. It should be noted that the arrangement is not substantial,

and other arrangements could be employed for a different usage scenario

(see section 5.2.3 for suggestions).
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Boundaries emerge between layers, and the lowest LOD layer has the

usual outer boundary that can be found in any finite grid based simulation.

Typically, bounce-back, repeating or non-reflecting boundary conditions are

employed. LBM with macroscopic variables allows to easily integrate these,

and this work uses a very simplistic approach of dampening them towards

an idle state. An advantage of the LOD scheme is that this outer simulation

domain can be pushed very far away, so that it hardly matters.

Between LOD layers three processes can be observed. First, flow from

higher LOD layers may pass to a lower one. This stands in contradiction to

the second case of normal flow inside a layer since here a lattice point has

two possible sources for neighbouring values. Then, there must be some

flow from lower to higher layers.

1 bool TreatOuterLODLayerBoundary(inout int2 xNeighbour, inout int
layerIndex)

2 {
3 bool treatOuterBoundary = any(xNeighbour < 0 || xNeighbour >=

TextureSize);
4 if (treatOuterBoundary)
5 {
6 xNeighbour = (xNeighbour + HalfTextureSize) / 2;
7 layerIndex++;
8 }
9 return treatOuterBoundary;
10 }
11

12 bool TreatInnerLODBoundary(in int2 x, inout int2 xNeighbour, inout int
layerIndex)

13 {
14 int2 lowerBounds = FourthTextureSize / 4;
15 int2 upperBounds = 3 * (FourthTextureSize / 4);
16 bool isPointOutsideOverlapArea = any(x < lowerBounds || x >= upperBounds

);
17 bool isNeighbourInsideOverlapArea = all(xNeighbour >= lowerBounds &&

xNeighbour < upperBounds);
18 bool treatInnerBoundary = isPointOutsideOverlapArea &&

isNeighbourInsideOverlapArea;
19 if (treatInnerBoundary)
20 {
21 xNeighbour = 2 * xNeighbour - HalfTextureSize;
22 layerIndex--;
23 }
24 return treatInnerBoundary;
25 }

Listing 4.2: Let x be the current lattice point, xNeighbour a direct neighbour

on the current layer with index layerIndex and TextureSize
equals =. Other variable names are chosen to be self-explanatory.

Outer boundary treatment is required for the flow from low to high

LOD layers (see figure 4.6) with two possible approaches. Variables of a

neighbouring lattice point can be used directly. This is computationally

efficient but an incorrect spatial position is considered. Using interpolation
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High to Low Low to High

Figure 4.6: A schematic cross section view shows the possible flow between stacked

LOD layers and the simulation domain boundary for the lowest detail

layer. Two extracts of a close-up top down view depict a possible

treatment of flow from high to low layers (left) and from low to high

layers (right).

instead, the variables of exact neighbour positions can be approximated.

This requires more lattice point evaluations. The first option is depicted on

the right in figure 4.6 and used for this work as shown in listing 4.2.

Inner boundary treatment is required where a lower LOD layer has the

option to get its neighbouring variables from a higher layer. In this case,

there are several options to choose from. First, the neighbourhood variables

can simply be retrieved from within the same layer. When instead retrieved

from a higher layer, there is an ambiguity because 4 higher lattice points are

covered by the lower one. Taking the average or choosing a random point

of the 4 candidates would be the most exact solution. From a computational

point of view it is simpler to just select the same point every time which is

implemented by the code in listing 4.2 and depicted on the right in figure 4.6.

Finally, there is the option to combine values fromwithin the layer and from

the higher layer.

Adapting the level of detail

So far the described scheme allows depicting different levels of detail but

lacks adaptivity. The first step to adaptivity is limiting the number of active

LOD layers to Mact
. Then, the camera’s altitude above mean sea level hcam is

used to determine the index of the highest active LOD layer oact:

oact = max

©­«0,

⌈
log

2

(
1 + � |hcam |

l0

)⌉
− 2

ª®¬ (4.28)

Here, � is a LOD factor that can be used to bias the level of detail towards

higher or lower details. Figure 4.7 has the function plotted alongside the

graphof the functionwithout rounding that is useful to get the fractional part

for fading purposes. In short, the active LOD layer is selected in dependence

of the minimum spatial length such that without any bias the first change

occurs at three times the minimum spatial length.

When the highest active LOD layer changes, the now obsolete LOD

layer is replaced by a new layer of either higher or lower detail. Thus, the

number active layers is always fixed. A decrease of altitude means the
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Figure 4.7: Plot of the active highest LOD level for different altitudes. Here l0 = 64

and � = 1.

newly added layer has higher detail. Here, it can be initialized with the state

of the overlapping area of the next lower LOD layer. Upon the increase of

altitude, only the inner part of the new layer’s simulation domain is currently

represented by the next higher layer. In this case, only the inner part is set

to the known state while the outer part is initialized to some idle state.

Camera movement parallel to the sea surface needs to be considered

as well. The basic idea is to realign each layer once a certain threshold is

exceeded. To avoid copying large amounts of memory only the obsolete

area of a layer is overwritten and memory access is adjusted by an offset.

Figure 4.8 shows an example of a movement and the resulting realignment.

This scheme successfully keeps memory changes and the workload during

a realignment at a minimum. However, keeping track of multiple offsets,

detectingboundaries,copying layerdata and integrating substepping turned

out to be undesirably complicated. Thus, it is not presented in more detail.

Instead, in section 5.2.3 suggestions are made on how to alternatively set up

an adaptive LOD scheme.

4.2.4 GPU implementation

Simulation is performed in a compute shader, dispatched for each LOD

layer’s active sub domain, reading from one and writing to another texture

array. The procedure can roughly be split in the following steps, for which

insights and suggestions are presented thereafter:

1. Load sea bed elevations to shared memory.

2. Calculate the local equilibrium for the centre lattice direction.

3. Iterate the neighbouring lattice points.

• Treat the LOD boundaries.

• Calculate the local equilibrium distributions f 4@
8
.

• Evaluate the sea bed influence and external forces.
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Figure 4.8: During camera movement the LOD layers are realigned upon exceeded

some threshold. The top left shows the layer arrangement before and

the top right after a camera movement to the left. As depicted in the

top centre, the change due to realignment of the layer is made up of

only a small portion of the layer’s area. Reflecting this property to

the implementation can be achieved by using an offset every time the

memory is accessed. This prevents to move and copy the entire layer’s

content increases the model’s complexity.

4. Get the macroscopic properties depth d and velocity u and ensure

stability conditions are satisfied.

5. Calculate the surface normal through central differences.

6. Write the results to an output texture.

Usage of shared memory

In general, the neighbouring access of textures is rather GPU friendly, and

the texture holding the simulation values can be accessed with load instead

of sample operations. Next to the simulation data, the sea bed elevations

need to be loaded or possibly sampled from another texture. Applying the

Peak-Performance-Method [Bav19] showed that work has to be removed from

the texture unit. Storing sea bed elevations in shared memory while loading
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simulation data in-place yields a better balance of workload and is therefore

suggested. Each thread stores the sea bed elevations of its four diagonal

neighbours in shared memory. This approach covers all candidates without

the need of boundary handling.

Extracting the centre lattice direction

Since the centre lattice point is much simpler (see definition of C8 3.39), it

can be explicitly treated before looping the neighbourhood.

Iterating neighbouring lattice points

The loop over the 8 neighbouring lattice points is explicitly marked with

the [unroll] keyword. This allows the compiler to unroll the loop and

reorder instructions in a way it sees fit, resulting in a gain of performance.

Looking at the equilibrium function shows a lot of divisions:

f 4@
8
=


d
(
1 −

5gd
6e2

− 2u · u
3e2

)
, 8 = 0

�8d

(
gd
6e2

+ e8 · u
3e2

+ (e8 · u)
2

2e4

− u · u
6e2

)
, 8 ≠ 0

Fortunately, once the simulation is set up the particle speed e never changes,
and all divisors can be pre-calculated on the CPU. Henceforth, calculating

f 4@
8

only consists of additions, subtractions and multiplications.

Velocity, depth and stability

When all neighbouring lattice points have been processed, a division by

the water depth d is needed to obtain the velocity u (see equation 3.42). A

division by zero must be ruled out at this point. If a depth of zero is detected,

the velocity is set to zero as well.

Additionally, measures are taken to ensure both depth and velocity

are still within their supported limits that keep the simulation stable. In

listing 4.3 an implementation is presented to enforce the limits at run-time.

Instead of hardly capping the water depth, it is smoothly cut off employing a

smoothmin function proposed byQuilez [Qui13]. In particular, the current

depth d is limited to d3with a smoothed radius of 0.2∗d3. The factor of 0.2was

found to yield satisfying results. While in the best case values never exceed

their limits at all, it cannot be ruled out in a dynamic game environment.

Without smoothly capping the water height, hard edges are visible which

in turn lead to ripples on the water surface. Hardly capping the velocity is

not directly visible and in was therefore considered as sufficient.
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4.3 COUPLING DEEP AND SHALLOWWATER

1 float smoothmin(float a, float b, float k)
2 {
3 float h = max(k - abs(a - b), 0.0) / k;
4 return min(a, b) - h * h * k * (1.0 / 4.0);
5 }
6

7 void EnforceStabilityConditions(inout float2 u, inout float d)
8 {
9 d = smoothmin(d, DepthLimit, 0.2 * DepthLimit);

10 float magnitudeU = length(u);
11 if (magnitudeU > 0.0)
12 {
13 u /= magnitudeU;
14 u *= min(magnitudeU, VelocityLimit);
15 }
16 }

Listing 4.3: To ensure a stable simulation, the stability conditions are enforced at

runtime. Here, DepthLimit equals d3 and VelocityLimit is set

according to equation 4.25. The smoothmin function was proposed

by Quilez [Qui13].

Calculating surface normals

Surface normals are calculated with a central difference approach using the

sum of depth and seabed of direct neighbours. This is important since the

desired normals are those of the sea surface and not of the water’s depth.

Taking the values during the iteration of neighbours essentially means that

normals are created for the last simulation state. However, this saves another

neighbourhood evaluation and the performance advantage was considered

worth the trade-off.

Writing results to texture

Experiments have shown that 32 bit floating-point precision is required for

the depth. Using just 16 bit precision for the depth resulted in the loss of

water when run for a longer period of time. Lowering precision per velocity

component to 16 bit does not induce a loss of water depth. Using a texture

with four 32 bit channels allows to store the depth in a single channel, both

velocity components are packed into another single channel and the surface

normal in the remaining two channels. For the surface normals this means

only 2 of 3 components are stored, themissing third one can be reconstructed

using the property that its length is 1.

4.3 Coupling Deep and Shallow Water

Key reason to couple deepwaterwaves obtained from the FFT approachwith

the shallow water simulation is to get physically-plausible interactions at
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Figure 4.9: Deep water to shallow water coupling zone with zp = 30 and zw = 10.

Both peak and width can be used to determine a fading factor for deep

water waves.

the inshore and shore. None of the referenced works describe a combination

of FFT height field with a physically-based fluid simulation in a suitable

way. Either the FFT approach was used to add details to a low resolution

simulation [CM10] or the shallow water simulation was coupled with other

fluid simulation methods [Oje13a; CMK15].

Therefore, several own ideas of coupling them in a plausible way were

tested. One attempt was to derive an external force which can be input

to the LBM equation and another was to describe it similarly to the sea

bed consideration. Former was considered too complicated in terms of

implementation and computational complexity. Latter did not show any

advantages over the simple method that was chosen in the end. That is,

heights of selected Fourier bands are modified by some weight and used

to directly alter the water depth during simulation. The shallow water

simulation continues to propagate these changes in subsequent simulation

steps.

Weighting the Fourier heights

Finding a suitable weighting is fundamental in this procedure. First, there is

a parameter �dw that globally controls the influence of deep water heights

on shallow water. The target frame time Δt 5 and the amount of substeps

MBD1
of a LOD layer are considered to normalize the influence for different

layers and target frame times. Then deeperwater should experience a greater

impact than shallow water. Here, the relative depth d/d3 is used. Finally, a
bell-shaped function is introduced that allows to control a zone based on

the sea bed elevation in which deep water should influence shallow water

simulation:

�zone(x) = exp

(
− 1

zw
(z1(x) − zp)2

)
(4.29)

Figure 4.9 shows the plot of the coupling zone alongside a linear fading

factor that is later used to hide certain Fourier bands where shallow water
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4.4 RIGID BODY INTERACTIONS

simulation takes over. Putting all introduced weights together, the water

depth d is altered by heights of suitable MBF Fourier bands:

d′ = d +
(
�dw Δt 5 MBD1 d

d3
�zone(x)

) MBF∑
<=1

h<(x , t) (4.30)

Selecting suitable Fourier bands

Selecting Fourier bands suitable to influence the shallow water simulation

should be done in accordance to the Nyquist-Shannon sampling theorem.

For shallow water LOD layers the spatial length, resolution and update rate

is known so it is easy to get the sampling frequencies. However, the Fourier

bands contain a wide range of frequencies and satisfying the sampling

theorem for the highest frequency turned out to be too restrictive. Instead,

it is relaxed towards the band’s lower frequencies by a user-defined amount.

Since amplitudes of higher frequencies are smaller, no visible aliasing is

introduced this way.

4.4 Rigid Body Interactions

To efficiently manage rigid bodies a simplified model of physics proxy

objects is employed. Collisions are evaluated using simple sphere or capsule

collisions and the effect on the shallow water simulation is modelled

procedurally. The physics proxy objects are sorted into an octree spatial

datastructure on the CPU and an entry is made in a linear GPU buffer. Every

frame relevant objects are queried and mapped to thread groups of a GPU

compute shader. There, both effects of the proxy objects on the simulation

and buoyancy force acting on the proxy object are evaluated. Forces are then

read back to the CPU and passed on to the engines physic solver.

Preliminary collision detection

Every frame the octree datastructure holding the proxy objects is queried

for intersections with the currently processed simulation sub domains of

each LOD layer. A bounding box is created for this purpose, that matches

the sub domain’s spatial extent horizontally and covers a controllable height

vertically. Step 1 in figure 4.10 visualizes this process. For each intersecting

proxy object it is then exactly determined in which subregions it lies in. A
subregion is a subset of the sub domain that can be covered by a single

compute shader threadgroup. In step 2 of figure 4.10 the threadgroup is

4 × 4 where each thread is responsible for one pixel of the shallow water

simulation texture. In practice the threadgroup size should be at least 8 × 8.

A compute shader is dispatched with the required number of thread

groups, 4 in case of the third step of figure 4.10. A first buffer holds start
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Figure 4.10: The three steps show how objects outside LOD layer sub domains are

sorted out and how remaining objects are mapped to thread groups

where they are re-identified in order to be processed.

and end indices to a second buffer and it allows each thread group both

to identify the simulation texture with the coordinates it is supposed to

modify. The second buffer holds the actual indices to the linear physic object

buffer that holds all objects. In the linear buffer each object has 64 B of data

reserved for its position, its object, collision and effect type and the remaining

as free payload that is used depending on the types. Types are identified by

checking an associated bit of an 32 bit integer.

Precise collision detection

The reduced number of objects that have to be processed by the GPUmake it

feasible to iterate the assigned objects. After loading the shallowwater depth

d, the seabed elevation z1 and the deep water height, the ocean surface’s 3D

world position w ∈ R3
is calculated and a more exact collision test can be

performed.

A sphere allows for a very simple collision test. The surface’s world

position allows to calculate the signed distance to the sphere’s surface using

the sphere center c and radius r. To prevent branch divergence, processing

an object is not aborted if a collision test fails. Instead, any effects are set to

zero if the signed distance indicates that the world lies outside the sphere.

56



4.4 RIGID BODY INTERACTIONS

In addition to sphere’s, capsule are supported as collision geometry.

Capsules are convenient, since they can be reduced to the previous sphere

collision test. Two points a , b are the start and end of a line. The point on

the line w′ that is closest to w can be calculated by linear interpolation

w′ = a + t ∗ (b − a)with t [Weind]:

t =
(a −w) · (b − a)
(b − a) · (b − a) (4.31)

Using w′ as the center of a sphere while clamping t in the range of 0 to 1

models the collision with a capsule. Without clamping t the same approach

can be used to test with an infinite line.

One reason to use capsules instead of spheres is to prevent missing

collisions of fast moving objects or due to large time steps. In this case,

increasing the length of the capsule may not yield the most exact collision

but it allows to detect them where a simple sphere test would fail.

Procedural effects

To describe the effect of objects on the ocean surface, both depth and velocity

of the shallow water simulation are directly manipulated in a procedural

way. That means an effect is a function using different parameters to alter

the depth or velocity in a certain way. Examples for effects are simply to add

or subtract a certain value, applying a sine wave, using random numbers to

depict debris causing ripples on the surface, zeroing the velocity to model

obstacles reflecting incomingwaves or inducing the velocity of a proxy object

to the simulation. Attenuating the effects and nullifying them is done using

the signed distance to the collision sphere. After all effects are evaluated,

the simulations stability conditions are enforced once more.

Buoyancy force read back

Running the simulation completely on the GPU has the difficulty of

evaluating buoyancy keeping objects afloat. Reading back data from GPU’s

memory to be processed by the CPU should be kept at aminimum to prevent

saturating the transfer bandwidth. Thus, reading back the simulation data

in its entirety is not an option. Instead, the buoyancy force is calculated on

the GPU in the same compute shader where effects are applied and written

to a buffer alongside a unique id to allow re-identification. To prevent race

conditions, a read back proxy object is only assigned to a single thread group

where only one threadmaywrite the calculated force. Contents of this buffer

are then copied to a staging buffer, that is optimized for CPU read back, once

it is detected that a frame was processed by the GPU [Mic18a]. With the

unique id the buoyancy force can be mapped to the right game object and is
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h

Figure 4.11: Calculating a sphere’s submerged volume using the assumption of a

flat plane leaves room for error but is simple to compute.

simply forwarded to the engine’s physic system. Since it may take a while

until this force is updated, it is continuously applied for a set period of time.

Buoyancy is an upward force that acts upon an object immersed in a

fluid. Archimedes’ principle states that the force equals the displaced fluid’s

weight. The weight can be calculated using the gravity g, the fluids density
� ≈ 1000 kg m

−3
and the volume of the displaced fluid V:

L1 = g�V (4.32)

The main task of buoyancy calculation is to calculate the volume of the

dispersed body. Assuming a flat surface, the submerged volume of a sphere

with radius r can be determined by calculating the volume of the sphere’s

one base segment (see figure 4.11 ) with h as the submerged height [RW04]:

V =
�
3

h2(3r − h) (4.33)

h = (w − c) · (0, 0, 1)) + r (4.34)

Here, the submerged height has to be clamped to the range 0 ≤ h ≤ 2r.

4.5 Output Combination

In the last step both vertices of the ocean surface mesh and a matching

texture are prepared. It is done in a compute shader to share values between

threads of a group enabling some optimizations. Additionally, the separate

preparation step simplifies integrationwithUnreal Engine’swater rendering.

The shader involves the steps of calculating world positions according to a

projected grid approach, selecting and processing shallowwater LOD layers,

samplingdeepwaterbands,determining the location of foam,writing results

to an output texture and updating the mesh vertices.

Figure 4.12 shows that the compute shader is dispatched to match the

output texture resolution. World positions for each pixel are calculated and

per group a single vertex of themesh is updated, such that the output texture

directly maps to the mesh.
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Figure 4.12: Threads of a compute shader are mapped to world positions according

to the projected grid approach. Since each thread stands for a pixel in an

output texture, the pixel’s world space dimensions can be calculated.

4.5.1 Projected Grid World Positions

The attempt to improve the projected grid approach adopts the polar

meshing idea suggested by Bowles [Bow13]. Since no further details on

the implementation of proposed idea were given in [Bow13], a possible way

to implement it is presented here.

A straightforward way to get a spherical mesh is to enforce equidistance

of grid points on the same horizontal line to the projector’s origin projected

on the base seaplane. During bilinear interpolation of the grid corners, the

distance between said origin and the interpolated points on lengthwise

grid edges can be calculated. The bilinear interpolated grid points can be

adjusted to match this distance.

This approach comes with two problems. Interpolated grid points are

pushed away from the origin and thus the grid may not cover the whole

screen any more. Linear interpolation does not yield same angle’s between

the lengthwise grid lines.

Snapping the camera’s rotation angle to match the grid points during

rotation (see figure 3.13) requires the angle between lengthwise grid lines

to be equal. Instead of linear interpolation, a form of spherical linear

interpolation presented to interpolate normals for shading [HBB03] is used.

For twonormalsT0 ,T1 and the tangentTC orthogonal toT0 , the interpolated

vector T (t)with 0 ≤ t ≤ 1 can be calculated using:

T (t) = T0 cos(t�) + TC sin(t�) (4.35)

This can be applied to the projected grid approach, since the four grid

corners are calculated and the lengthwise left and right grid edges can be

used in place of the normals. Let cGH be a point on the projected grid in

homogeneous world space coordinates with c00 , c01 ,c10 , c11 as the grid’s
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corners. Then angle � and tangents t00 , t01 to both c00 and c01 are calculated:

� = arccos

(
(c01 − c00) · (c11 − c10)

)
(4.36)

t0H =
1

sin(�)
(
c1H − cos(�)c0H

)
(4.37)

World positions of equal angles can be obtained in three steps. First, linearly

interpolate c00, c01 and tangents t00, t01 lengthwise with tH that describes

the position along the grid’s length:

c0tH = c00 + tH(c01 − c00) (4.38)

t0tH = t00 + tH(t01 − t00) (4.39)

Use spherical linear interpolation 4.35 with tG describing the position along

the grid’s width:

ctG tH = c0tH ∗ cos (tG ∗ �) + t0tH ∗ sin (tG ∗ �) (4.40)

After perspective division, this yields the standard projected gridmeshwith

equal angles. The grid point distance normalization as described previously

still has to be applied.

To tackle the problem of pushing vertices into the screen, the distance

normalization can be modified. Instead of pushing away centre grid points

near the camera, points to the edges should be pulled towards the projector’s

origin. Naturally this can be achieved by instead using the distance to the

centre grid point during normalization. As it can be seen in figure 3.13, the

grid corners span an arc on the base sea plane around the projector’s origin

projected on the plane. Thus, the distance to the centre point equals the

distance to the grid corner minus the arc’s sagitta.

4.5.2 Combining Shallow Water Detail Layers

With the world positions ready, the next step is to select appropriate shallow

water simulation LOD layers (see figure 4.13). For this purpose, each LOD

layer has a scale and translation that allows to convert world positions to

texture uv-coordinates. Startingwith the highest detail layer,world positions

are converted to uv-coordinates until two layers are found for which the

coordinates lie within the valid range of 0 to 1. If none of the coordinates

match this criterion this means the world position is not covered by the

shallow water simulation and for depth, velocity and surface normal, a

fall-back value is used.

Searching for two layers allows to fade the boundaries of layers as

depicted in figure 4.13. The uv-coordinates are used to decide where fading

needs to be applied. Additionally, the highest detail layer is faded according

to the fractional part of altitude LOD level selection as shown in figure 4.7.
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Figure 4.13: The arrangement of multiple LOD layers in world space on the

projected grid is shown in the left. Their boundaries are faded to

hide discontinuities of surface normals. Long time steps are hidden by

interpolating between old and new simulation states.

The presented shallow water simulation reads the previous state from

one texture, writes the result to another and swaps read and write textures

once all sub steps have been processed. Since the time step is fixed and can

get rather high for low detail LOD layers or certain set-ups, an interpolation

between old and new simulation states is employed to hide transitions. Due

to the sub stepping approach, old and new states may reside in different

textures for a single layer and each sub domain needs to be interpolated

individually. Thus, following steps are taken to interpolate with respect to

sub steps:

1. Sample depth, velocity and surface normal from both textures of the

LOD layer.

2. Decide which texture holds the old and which the new simulation

state. Let uv =

(
uvG , uvH

)
be the layer’s uv-coordinates, MBD1

G , MBD1
H

the number of substeps in G and H direction respectively and icur the

currently active sub step. Then the sub step of the target uv can be

calculated with:

itar =

⌊
uvH ∗MBD1

H

⌋
MBD1
G +

⌊
uvG ∗MBD1

G

⌋
(4.41)

If the target sub step itar is smaller than the current sub step icur, it

has already been updated and the the sample from the texture that is

currently written to by the simulation holds the new value, and vice

versa.

3. Calculate t used for interpolation with:

t =

{
1/(MBD1)(icur − itar), if itar < icur

1 + 1/(MBD1)(icur − itar), if itar ≥ icur

(4.42)

4. Interpolate depth, velocity and normal from old to new using the

interpolation value t as depicted in figure 4.13.
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4.5.3 Combining Deep Water Bands

For the combination of deep water all heights, normals and displacements

obtained from the FFT are iterated. Here, two optimizations using shared

memory are employed. Both the maximum water depth of the shallow

water simulation and the minimum pixel dimensions (see figure 4.12) of the

group are determined. InHLSL,minimum andmaximum atomic operations

on shared memory are only possible for unsigned integers. Since both

water depth and pixel dimension are not negative, their bit pattern can be

interpreted as an unsigned integer uint to determine the minimum and

maximum with atomic operations. The unsigned integer result in shared

memory can then be re-interpreted as float .

If the maximum water depth of a group is smaller than some epsilon,

the iteration of Fourier Transform outputs can be skipped completely. The

group’s minimum pixel dimension can be used to skip processing single

bands, depending on their wavelengths. Just like when selecting bands

for coupling with the shallow water simulation in 4.3, taking a band’s

minimum wavelength is very restrictive. So it is again relaxed towards the

band’s maximum wavelength by a user-defined amount. If this acceptable

wavelength is less than twice the minimum pixel dimension, the band is

skipped. In both cases it is important to let the compiler know to branch

the if statements using the [branch] parameter, otherwise they may be

evaluated nonetheless.

To prevent hard transitions due to skipping bands, their output is faded

byweighting it by the result of the acceptable wave lengthminus the current

pixel’s dimension clamped to the range of 0 to 1. Additionally, a weight

as depicted in figure 4.9 is applied to bands of high wavelengths. Low

wavelengths bands are kept everywhere to keep small scale details on the

otherwise little detailed shallow water surface.

Since heights are used for offsetting the mesh, their condition to

be included is based on the group’s dimension instead of a pixel (see

figure 4.13). This is similar to the approach suggested by Bruneton, Neyret,

and Holzschuch [BNH10], although here no BRDF representation is used.

4.5.4 Foam Generation

As introduced in section 3.2.7, the Jacobian determinant of the displacement

transformation can be used to detect locations of breaking waves, spray or

foam. It requires the calculation of the displacements partial derivative in

both G and H direction (see equation 3.18) which is also used in equation 3.19

to apply the slope correction.

Calculating the partial derivative is implemented using the central

differences approach. This comes at the cost of four texture samples per

displacement direction and therefore totals in eight samples per band with
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enabled displacement feature.

Foam is expressed as a value between 0 and 1, where 0 means no foam

and 1 means maximum foam. To control the amount of foam using the

Jacobian determinant, two parameters suggested by Tcheblokov [Tch15] are

adopted. They allow to specify a threshold at which foam starts and to

control the foam’s strength or thickness. Looking at figure 3.8 and at the

formula of the following HLSL code, it can be seen that foam is located at

crests of choppy waves:

1 float foam = saturate(FoamIntensity * (-JacobianDet + FoamThreshold))

Listing 4.4: Foam formula from [Tch15].

To generate foam for shallow water various approaches were tested and

the ones that proved to be useful have similarity with the suggestions to

detect breaking waves by Fournier and Reeves. They find that the surface’s

curvature needs to be high and the particle speed needs to be faster than

the phase speed [FR86]. Taking the dot product of the velocity u and the GH

components of the surface normal foam can be placed on the face of steep

waves. The relative velocitymagnitude determined in relation to the velocity

magnitude limit adds foam in areas of high velocity. Combined using the

maximum of both and multiplied by a shallow water foam intensity factor

�BF 5 , the result is subtracted from the Jacobian determinant. Thus, both

deep and shallow water foam are combined into one single description.

swfoam = �BF 5 max

(
u · nGH ,

|u |
1/6

√
gd3

)
(4.43)

4.5.5 Shoreline Mesh Correction

Determining the water surface for the shallow water simulation requires to

add the simulated water depth and the sea bed elevation which simply

is the terrain. Here, the problem is that for a water depth of zero, the

generated surface matches the terrain. Rendering both the terrain and the

water surface results either in z-fighting or overlapping polygons where

the terrain’s meshing differs from the ocean surface. Figure 4.14 depicts the

manifestation of the problem in vicinity to the shore where it is particularly

noticeable. To some extent the problem is connected to the projected grid

approach, since the cameramovement results in different sampling locations.

Two measures are taken to tackle the problem. First, the height to define

the vertex’ z-coordinate of a group (see figure 4.12) is set to the group’s

minimum water height. Again this is made possible with atomic operations

on shared memory. This measure prevents triangles in direct vicinity to the

shore to overlap the terrain as it can be seen in figure 4.14. Additionally, it

reduces the projected grid’s swimming artefact. To prevent the ocean mesh

to clip with the terrain mesh, the idea is to push the ocean’s mesh vertices
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Figure 4.14: Without precautions the water surface mesh covers the terrain in direct

vicinity to the shoreline. Additionally, its vertices match the locations

of the terrain where water depth is zero.

(a)Wireframe view of the ocean surface

meshwith terrain clipping prevention.

(b) Shadedocean surfacewith terrain clip-

ping prevention.

(c) Shaded ocean surface with terrain clip-

ping prevention and visible terrain.

(d) Shaded ocean surface without terrain

clipping prevention.

Figure 4.15: Different views show the terrain clipping prevention in comparison to

the ocean surface without clipping prevention.

below the terrain where the depth d is below a certain threshold. This needs

to be done smoothly or the problem of figure 4.14 happens in the opposite

direction. Thus, vertices are pushed further below the terrain the higher they

are above the average sea level. In figure 4.15 the result of the suggested

clipping prevention is presented alongside the ocean surface matching the

terrain when it is not applied.
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All performance tests were run in the UE 4.25 at a resolution of 1920 × 1080

on a system with an Intel® Core™i7-9700F processor, a NVIDIA GeForce
RTX™2070 Super graphics card, 32 GB RAM and Windows 10 OS. All

measurements of timing and additional presented metrics were obtained

using NVIDIA Nsight Graphics 2020.3.1. Here, two frames were recorded for

each test case, and the better result was used.

5.1 Deep Water Simulation Results

The Fast Fourier Transform approach allows generating a realistic animated

surface of the open ocean that was already employed in cinema. Sea

states during different weather conditions can be reconstructed using wave

spectra [Tes01] that were created using real life measurements of the ocean.

Combining swells and wind seas can be used to depict mixed sea, a realistic

sea that is used in maritime training simulators [PP20]. Figure 5.1 shows

four different sea states generated at the same absolute time t = 0. Depicting

a wide range of sea states and changing them seamlessly at runtime by

using fixed sampling points and random numbers, renders the approach

very flexible and interesting for the use in a game environment. Several

video games adopted the approach [Tch15; Ang+18; MT19] to different

extents, where the latest work [MT19] also allowsmodelling swells and local

wind sea. Both their result in figure 5.1e and this work’s results show low

frequency swellwaves and high frequencywindwaves travelling in different

directions.

5.1.1 Performance Analysis

While the FFT takes an absolute time as an input andoffers complete freedom

in terms of temporal adaptivity, it was run at full frame rate during the

following performance tests. Six different quality settings allow examining

the impact of different resolutions N ×N and amounts of performed FFT’s.

The results are listed in table 5.1. Both the size and update time of the time-

independent amplitudes ℎ̃0 depend on the number of employed frequency
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(a) Sea with swell and local wind. (b) Sea with swell and low local wind.

(c) Sea with huge swell and local wind. (d) Sea without swell and local wind.

Rendering the seas

(e) Image of the rendered sea with advanced lighting in the distance [MT19].

Figure 5.1: Different ocean sea states of the current work in comparison to a similar

approach from [MT19].

bands and the resolution. Since time does not scale at the same ratio at

which the texture increases, it is a hint that the GPU is not able to work at full

capacity for little workload. Nevertheless, the execution times of 0.0143 ms to

0.0410 ms are reasonably low to call the movement of spectrum sampling to

theGPU a valid option. As updating these amplitudes only takes placewhen

a sea system has changed, the GPU implementation is only advisable when

they change at runtime. Tomake a definite statement regarding thismatter, a

comparisonwith a CPU variant should be conducted in the future. However,

it was shown that the generation of the time-independent amplitudes ℎ̃0 is

suitable for parallel implementation and a solution to evaluate the gamma

function on the GPU has been proposed in listing 4.1.

Timing of the Inverse Fast Fourier Transform (IFFT) again shows that
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5.1 DEEP WATER SIMULATION RESULTS

Name of the test fftA fftB fftC fftD fftE fftF

Set up parameters
Fourier Size N 64 64 64 256 256 256

# Fourier Transforms 12 24 30 12 24 30

# FFT normals 0 6 6 0 6 6

# Central difference normals 6 0 0 6 0 0

# FFT displacements 3 3 6 3 3 6

Stats
ℎ̃0-Amplitude-Texture size (kB) 192 192 192 3072 3072 3072

FFT-Texture size (kB) 192 384 512 3072 6144 7680

ℎ̃0-Amplitude Update Time (ms) 0.0143 0.0143 0.0143 0.0410 0.0402 0.0410

IFFT First Pass Time (ms) 0.0161 0.0220 0.0230 0.0397 0.0596 0.0701

IFFT Second Pass Time (ms) 0.0102 0.0115 0.0123 0.0305 0.0489 0.0581

IFFT Total Time (ms) 0.0263 0.0335 0.0353 0.0702 0.1085 0.1282

Output Combination Pass Time (ms) 0.6659 0.8174 1.0332 0.7355 0.9380 1.1996

UE Water Rendering Time (ms) 1.3279 1.3235 1.3187 1.3374 1.3478 1.3542

Table 5.1: List of six different quality settings and their time measurements. For all

quality settings there are two swell systems with 1 band each and one

wind sea system with 4 bands.

an increase of resolution does not translate to a proportional increase of

execution time. The same is noticeable upon increasing thenumberofFourier

transforms. Here, doubling the number of FFTs translates to an increased

timing of 1.27× for N = 64 and 1.54× for N = 256. The first pass taking a bit

longer than the second pass can be explained by the fact, that the inputs are

modified to yield the desired output of height, slope or displacement. The

highest execution time of 0.1282 ms for 30 transforms at N = 256 is clearly

fast enough for real-time usage. To put this result into perspective, a single

FFT with N = 256 performed on an Intel® Core™2 processor in 2012 by

LeBlanc et al. took 17.2 ms [LeB+12].

The pass for the combination of the simulation outputs and sampling of

the Fourier outputs (Output Combination Pass) shows much higher execution

times ranging from 0.6659 ms to 1.1996 ms. An increase of the resolution and

the number of FFT transforms has a higher absolute impact on the execution

time. This indicates that once a fast GPU-based FFT is in place, the main

task is to use their outputs efficiently.

Comparing fftA with fftB shows that using a central difference

approach to calculate the surfacenormals is faster thanusingnormals created

with the FFT approach. Reason for this is not because of the additional cost

of the FFTs. This was the suggested consideration to take into account

when using FFT-based normals in the past [Tes01; LeB+12]. Instead, the

additional amount of texture sampling reduces the texture throughput

(L1TEX Throughput) from 81.6% in fftA to 58.2% in fftB. When calculating

central differences in fftA, texture data in direct neighbourhood is taken
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5 RESULTS AND DISCUSSION

(a) Rendered scene in fftA test. (b) Rendered scene in fftF test.

(c) Aerial view of the ocean during fftB test.

(d) Aerial view of the ocean during fftE test.

Figure 5.2: Rendering of the scene as taken during quality tests and additional

aerial views.

into account which was already loaded in the cache. For FFT-based normals

a different part of global memory has to be accessed, introducing a latency

slowing the execution.

Looking at the memory layout of the final FFT outputs in figure 4.4

shows, that half of it is used to store imaginary values that are not required.

They are only required in the intermediate step and therefore should be

dropped to effectively halve the texture size. Intuitively, this would allow

running fftB at the time of fftA.

A visual comparison of figure 5.2a and 5.2b allows the conclusion,

that both central difference normals and FFT-based normals produce a

similar and pleasant look. Tessendorf suggested, that the central difference

approach is less suited to depict small wavelengths depending on the finite

difference [Tes01]. With the band separated approach, a suitable difference
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5.2 SHALLOWWATER SIMULATION RESULTS

for theneighbourhoodevaluation canbe chosen foreachband. Thus,normals

of both high and small wavelength waves can be well represented.

Since the amount of different textures sampled has such a high impact on

performance, testfftEwas repeatedwithout skipping bands ofunacceptable

wavelengths (as introduced in section 4.5.3) bymarking the if statementwith

the [flatten] parameter. In this case the execution time increased from

0.9380 ms to 1.1139 ms what can be attributed to a higher amount of both

instructions and texture samples. The ability to discard a high amount of

work for whole thread groups shows the benefit of using a compute shader

to combine the outputs.

Increasing the resolutionN is desirable as it increases the spatial length of

individual bands and therefore decreases the visibility of their tiling nature.

This is particularly noticeable from the aerial perspective as depicted in

figure 5.2c and 5.2d. From the performance point of view it differs in that

the GPU’s L2 cache is more heavily utilized and has a lower hit rate. This

is expected since more data needs to be loaded from global memory. On

average the L2 throughput is increased by 8.2 percentage points from 20.4%

in fftB to 28.6% in fftE. For N = 256 the load on L2 varies heavily reaching

up to about 75%. This may stem from the fact that different thread groups

read very different slices of the Fourier texture array. Besides reducing

the amount of texture data it should therefore be considered to sort the

texture slices by their wavelength to increase locality. This has the additional

benefit, that once one Fourier output has an unacceptable wavelength, all

the following can be rejected.

To close this performance analysis, it can be said that the main concern

of the FFT approach shifts from the transformation itself to the efficient

utilization of its outputs. Their amount and arrangement in memory is

of utmost importance and any chance to reduce the amount of evaluated

texture samples should be taken. Due to time limitations, the suggested

improvements of the memory layout could not be implemented.

5.2 Shallow Water Simulation Results

The goal of an additional fluid simulation is to depict several features that

are not possible with the presented FFT approach. Figure 5.3b shows an

island from the bird’s eye view, rendered using only the FFT approach.

Here, the ocean shows no awareness of the land. The same scene rendered

only with the shallow water simulation in figure 5.3c shows waves, aligning

to the shore similar to Fournier and Reeves’ work shown in figure 5.3a.

Together with the FFT approach, lacking details are reintroduced as shown

in figure 5.3d. Thus, the benefits of the FFT approach are supplemented

with waves that converge or diverge based on the topology, diffract due to

obstacles and change their speed, when they run up the shore according to
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5 RESULTS AND DISCUSSION

(a) Modified Gerstner Waves lining up to

the shore [FR86].

(b) View of an island with deep water has

no waves aligning to the terrain.

(c) Ocean surface as created by shallow

water simulation lacks detail.

(d) The combination of shallow and deep

water has waves lining up the shore

and rich surface detail.

Figure 5.3: Comparison of individual deep and shallow water parts and its combi-

nation to the ocean surface generated by Fournier and Reeves in 1986.

the shallow water dispersion relation.

A closer look in figure 5.4a shows that the coupling zone and deep water

fading (see section 4.9) emphasize the waves in this transition zone too

much. Depending on the simulated viscosity that in turn depends on lattice

size and the stably supported depth, waves may run out too soon before

reaching the shore as expected. Here, a better way to control where the

coupling happens needs to be introduced. One way could be to introduce an

artist controlled map to allow manual placement of coupling zones instead

of simply calculating it from the terrain height. Deepwater fading could still

be derived from this coupling map, but it needs to be improved to prevent

exaggerating waves in the coupling zone.

Additionally, the coupling does not represent small waves well. Since the

FFT wave heights directly modify the shallowwater state, it takes some time

for them to develop their effect. Weighting them more strongly will induce

too much of a wave to the shallow water simulation over time. Therefore,

the weight has to be tuned down which does not give small waves enough

time to develop a meaningful effect. Having a higher weight for bands of

small wavelengths could remedy this. It was not pursued further due to

time limitations.
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5.2 SHALLOWWATER SIMULATION RESULTS

(a) In the deep to shallow water transfer

zone, waves are weighted too strongly.

(b) The surface mesh has low resolution

on the face of steep waves.

Figure 5.4: This view on the ocean from a bay shows diffracting waves.

Calculated foam for shallow water has low detail as it can be seen in

figure 5.3c. The combination with the deep water Jacobian foam allows to

increase its intensity where foam would arise according to shallow water

waves. Since this detection mostly matches the steep face of the wave, the

shallow water foam intensity needs to be set rather high in order to show it

on top of the waves, where one would expect it. This has the side effect of

creating foam at places where it is not supposed to be.

A better way to handle foam would be to detect its location and then

create and dissipate it over time. This is described by Tcheblokov for the

FFT approach. In addition to this it could be advected using the shallow

water velocity field for an even more realistic look. Improving the foam and

adding other missing features, i.e. spray or breaking waves, is out of the

scope of this work but should be considered in the future.

5.2.1 Comparison of Simulation Methods

The surface of just the shallow water simulation in figure 5.3c is very dull

and lacks fine grain details. For one, this is because of a rather low lattice size

∆x of the LOD layers at the depicted altitude. Simply using lower lattice sizes

is not possible because the simulation domain either becomes very small

or the grid resolution unmaintainable high. This is true for all integration

schemes, although the relationship between the type of flow that can be

stably simulated and its implications on the time step are different. Here, a

short comparison with other simulation methods is presented,

The macroscopic LBM is limited to subcritical flow and a low Lattice

Reynolds numbers according to its stability conditions, independent of the

employed lattice size. Other methods like the pipe model, the proposed

model by Chentanez and Müller and also the standard LBM are not

necessarily that much restricted. A low Lattice Reynolds number means,

that the flow is dominated by viscous forces and does not show turbulent

behaviour. In the scene of figure 5.5b and 5.5d, the water surface therefore
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5 RESULTS AND DISCUSSION

(a)Water runs down a hill [Kel17]. (b) Water runs down a hill and around rock.

(c) Flow of an eddy becomes visi-

ble due to advected surface de-

tails [CM10].

(d)Without advection the flow of an eddy

cannot be seen.

(e) Clearly visible waves of

boats [2009Coords].
(f) Soft waves due to high an eddy viscosity.

Figure 5.5: Comparison of various scenes from this work and related work.

settles in a steady state of laminar flow. The only option to stably simulate a

more detailed surface is to increase the number of lattices [Moh19, p. 111].

But adding external forces to the fluid due to effects of moving rigid bodies

or the coupling with FFT heights can hide the laminar nature of the flow

and prevents it to come to a steady state. Chentanez and Müller solve the

problem of little surface details by advecting texture coordinates with the

fluid velocity to visualize the flow as depicted in figure 5.5c. This is not

included in this work but should be considered in the future as it would
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5.2 SHALLOWWATER SIMULATION RESULTS

greatly enhance the feeling of a moving water surface, even during laminar

flow.

Setting up the simulation to support a desired depth allows to control

the simulation intuitively. To stably simulate rather high water depths, the

depicted viscosity is increased as shown in section 4.2.2. This makes it

difficult to simulate smaller features like waves of a boat (see figure 5.5f) in

a pronounced way. Figure 5.5e shows boat waves that are created by solving

thewave equations especially for the purpose of object inducedwaves [CS09].

Therefore, a trade-off has to be made whether to favour smaller features by

decreasing the desired depth or instead to favour waves that react to the

seabed even in deeper areas.

In contrast to the standard LBM, the key advantages are the reduced

memory requirement and the direct use of physical variables. Instead of

storing 9 probabilities per lattice point only the depth and velocity are

stored. On the other hand, for the standard LBM many improvements were

introduced to allow stable simulation of more turbulent flows, although

being more complicated and less computationally efficient [Zho19a].

Both the macroscopic LBM for shallow water simulation and the virtual

pipemodel are suitable for a parallelGPU implementation.With the reduced

memory requirement of the reformulated LBM a substantial drawback is

removed. In contrast to the pipe model, the shallowwater equations include

the velocity self-advection and it is not required to calculate the velocity in an

additional step. While more precise stability conditions for the macroscopic

LBM are advantageous, they are very limiting on the type of flow. Here, a

more in-depth comparison of both methods would be an exciting research

for the future.

5.2.2 Performance Analysis

Performance of the LBM shallowwater simulation and themerging of layers

to the output texture is evaluated for different quality settings including a

minimal reference setting listed in table 5.2. All tests have 5 active layers

at the same time with identical minimum lattice size, but they differ in

resolution and the highest active LOD layer. Figure 5.6 shows an image of

the test scene for both sweA and sweE alongside a debug view that shows

LOD layer selection and fading.

Both grid resolution n and number of active LOD layers dictate the size

of the texture. Since four channels of 32 bit each are used, the memory usage

reaches ∼ 327 MB for sweE and sweF. One channel is dedicated for the water

depth, one for both velocity components and two for the surface normal. This

attempt to keep all data in a single texture has several drawbacks. It is not

necessary to store components of a normalwith 32 bit precision. Packing two

velocity components into a single channel involves some bitwise operations

that prevent using texture interpolation for them. During simulation no

73



5 RESULTS AND DISCUSSION

Figure 5.6: View of the scene during test and alongside of a debug output that

shows LOD layers and fading as they are mapped on the surface mesh.

interpolation is required, but deriving foam informationwith point sampled

velocities produces block-like foam. To summarize this, it was found that

water depth needs 32 bit precision but trying to pack depths, velocity and

surface normals into one single texture is not advisable. Instead, a second

texture just for the surface normal could be used. Another idea that could

be tested is to keep two different sets of the simulated physical properties.

One for simulation purposes using high precision and one for displaying

the results using low precision.

The LOD system has two major benefits. It allows covering a large area,

and areas of low detail can be used as the initial state for higher detail areas.

With the addition of sub stepping the amount of simulated lattice cells per

frame is evenly distributed. Both sweA and sweD process the same amount

of cells per frame but sweD covers eight times the area. Biasing the active

LOD layer with � should be done depending on the resolution n to avoid

layers getting too small in the view port like sweA in figure 5.6.

One drawback that can be observed is that an overhead is introduced

since each layer requires its own compute shader dispatch. Covering a total

area of 819.2 m in sweA with 5 layers takes 0.1605 ms and in sweF it takes
0.1810 ms for just 1 layer. But in sweFmore than double the amount of lattice

cells (1 048 576) is processed in about the same time. The less work done by

the GPU in a single dispatch, the less is the number of processed cells per

time. To prevent getting low detail layers inefficient an attempt should be

made to treat all layers in a single dispatch. Here, reading from and writing

to different texture arrays for different layers poses a difficulty.

Besides the percentage deterioration, absolute times to cover the same

area at a lower detail render the LOD system very flexible. The single highest
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Name of the test sweA sweB sweC sweD sweE sweF sweG

Set up parameters
Shallow Water Size n 512 512 1024 1024 2048 2048 512

# Active LOD Layers Mact
5 5 5 5 5 5 1

Highest LOD Layer oact 0 2 0 2 0 2 0

Properties of active layers 0 to 4

[0] Spatial length l (m) 51.2 204.8 102.4 409.6 204.8 819.2 51.2

[0] Lattice size ∆x (m) 0.1 0.4 0.1 0.4 0.1 0.4 0.1

[0] Sub step Size 512 × 512 256 × 256 1024 × 1024 512 × 512 2048 × 2048 1024 × 1024 512 × 512

[1] Spatial length l (m) 102.4 409.6 204.8 819.2 409.6 1638.4 −
[1] Lattice size ∆x (m) 0.2 0.8 0.2 0.8 0.2 0.8 −
[1] Sub step Size 512 × 256 256 × 128 1024 × 512 512 × 256 2048 × 1024 1024 × 512 −
[2] Spatial length l (m) 204.8 819.2 409.6 1638.4 819.2 3276.8 −
[2] Lattice size ∆x (m) 0.4 1.6 0.4 1.6 0.4 1.6 −
[2] Sub step Size 256 × 256 128 × 128 512 × 512 256 × 256 1024 × 1024 512 × 512 −
[3] Spatial length l (m) 409.6 1638.4 819.2 3276.8 1638.4 6553.6 −
[3] Lattice size ∆x (m) 0.8 3.2 0.8 3.2 0.8 3.2 −
[3] Sub step Size 256 × 128 128 × 64 512 × 256 256 × 128 1024 × 512 512 × 256 −
[4] Spatial length l (m) 819.2 3276.8 1638.4 6553.6 3276.8 13107.2 −
[4] Lattice size ∆x (m) 1.6 6.4 1.6 6.4 1.6 6.4 −
[4] Sub step Size 128 × 128 64 × 64 256 × 256 128 × 128 512 × 512 256 × 256 −
Stats
Simulated cells per frame 507 904 126 976 2 031 616 507 904 8 126 464 2 031 616 262 144

Texture size (MB) 20.480 20.480 81.920 81.920 327.680 327.680 4.096

[0] Simulation Time (ms) 0.0586 0.0282 0.1795 0.0596 0.6574 0.1810 0.0573

[1] Simulation Time (ms) 0.0376 0.0200 0.0973 0.0379 0.3366 0.0996 −
[2] Simulation Time (ms) 0.0279 0.0172 0.0581 0.0300 0.1784 0.0586 −
[3] Simulation Time (ms) 0.0200 0.0159 0.0381 0.0197 0.0993 0.0402 −
[4] Simulation Time (ms) 0.0164 0.0161 0.0287 0.0161 0.0556 0.0284 −
Total Simulation Time (ms) 0.1605 0.0974 0.4017 0.1633 1.3273 0.4078 0.0573

fftA Combination Pass Time (ms) 0.8622 0.9285 0.9170 0.9439 1.0035 1.0214 0.6909

fftE Combination Pass Time (ms) 1.1436 1.1940 1.1955 1.2605 1.3202 1.3240 0.9375

Table 5.2: List of six different quality settings plus a reference setting with minimal

shallow water layers along their time and memory metrics. Results for

specific layers are written using an array like notation where [0] is the
highest detail active LOD layer. Timings for the Output Combination

Pass are given for the two FFT tests fftA and fftE (see table 5.1).

layer of sweF covers 204.8 m with a lattice size of 0.1 m and a simulation

time of 0.6574 s. The same area is covered by three layers in sweA taking just

0.1241 s with the same lattice size and level of detail for an area of 51.2 m.

In theory the simulated domain can get very big as it grows quadratically

with layers. However, at some point it becomes questionable whether it is

useful as the lattice size grows at the same rate, and therefore, the level of

detail gets very low.

To evaluate the impact of LOD layers on the Output Combination Pass,
times were measured in combination with a low and high quality setting

fftA and fftE of table 5.1. Two key aspects affect the time: The area of the

screen that is covered by LOD layers, and the resolution and thereby size

of the texture. The former is the reason why the time from sweA to sweB
rises more than from sweE to sweF. In sweE the screen is covered nearly

completely (see 5.6) and an increase of spatial coverage has a small impact.
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Since sweB and sweE cover the same simulation domain of 3276.8 m, the

time difference can be attributed to the second aspect of increased resolution.

Besides the higher bandwidth usage that is expected for the much higher

texture size, the sweE test has itsL2CacheHitRatedecreasedbyapproximately

25%. This indicates that sampling LOD layers for neighbouring pixels in

screen space does not translate to closely neighboured sample locations in

the simulation texture. Comparing sweEwithsweF supports this assumption,

because in sweF the L2 Cache Hit Rate is 13 percentage points higher than

in sweE. Therefore, the LOD bias should be selected carefully. However,

it would be best when the selection of the highest active LOD layer gets

coupled with the resulting pixel size instead of using a formula based on

altitude and a controllable LOD bias.

Overall theGPU implementation of themacroscopic LBM for the shallow

water simulation yields promising and manageable timing for the usage in

a video game. The added scalability of simulation time, memory usage and

covered area introduced by the LOD system makes it even more attractive.

5.2.3 Adaptive Level of Detail

It was found that moving layers with the camera introduces an undesirable

amount of complexity. Even in the final implementation, re-alignment

created disturbances on the water surface. Instead of the alignment to the

camera movement a different set up of stationary LOD layers should be

employed. The exact nature should be adjusted to the usage scenario, but

the core concept of doubling the spatial domain and time step and in turn

halving the processed cells per frame stays the same.

This concept can be considered a basic framework towards spatial

and temporal adaptivity built around the self-adjusting property of the

macroscopic Lattice Boltzmann Method. It can be used for other refinement

criteria instead of the distance to the camera. More detail could be used

just in certain area of interests like near the shore. Even more sophisticated

criteria like the closeness of a layer’s content to the representable detail could

be used to increase detail where the flow gets more complex.

Certainly, the proposed LOD system requires more attention regarding

introduced errors if adopted for scientific purposes. Important considera-

tions are the choice of boundary handling between layers or the copying of

data between layers of different detail. A reason for surface disturbances in

this work’s implementation are mismatched sample locations of the seabed

elevation. They are located at a cell’s centre and after copying to another

layer the sampled elevation is not identical any more. Precise interpolation

or averaging of the simulated physical quantities should be introduced, to

tackle this issue. This should be the researched in more detail in the future

as it is out of the scope of this work.
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Figure 5.7: Two-way interaction of the simulated ocean surface and rigid bodies

modelled by proxy objects.

5.3 Interaction with Rigid Bodies

With the physical variables depth and horizontal velocity in place they can

be directly manipulated to cause an effect of rigid bodies colliding with the

water surface. This is an advantage of the macroscopic formulation over

to the standard LBM where this modification has to be integrated into the

equilibrium distribution function [Oje13a]. In contrast to the pipe method,

effects can be articulated in terms of a change of fluid velocity. This should

be preferred over height modifications to keep the volume identical, unless

adding or removing water from the system is desired.

The idea of physics proxy objects is to simplify the interaction with the

ocean surface. Spheres offer the simplest form of collision detection.With the

addition of capsules, benefits of sphere collision detection can be kept while

it can be ensured to detect collisions even for large time steps. Applying

procedural effects onto the surface within the collision volume allows to

hide the simple nature of the proxy object. However, authoring effects on a

pure mathematical basis is not very appealing from a designer’s perspective.

Instead, texture-based descriptions of effects could be introduced.

Figure 5.7 shows a scene with various proxy objects interacting with

the shallow water simulation. Several sine wave effects introduce wave

to the simulation by directly altering the height. Buoyancy is calculated

and read back for a multitude of spheres, small boats and cylinders that

reflect incoming waves simply by negating the incoming fluid’s velocity. In

figure 5.8 an in-editor view shows the placement of several proxy objects

including spheres for the buoyancy calculation with a line representing the
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Figure 5.8: This screenshot of the UE editor shows the placement of proxy objects

and force read back indicators.

magnitude of it. Besides buoyancy one could add other forces like drag or

drift in the future.

For concave objects like the boat the problem arises that thewater surface

simply cuts through it. Solving this by actually displacing the water would

require a very high simulation resolution that is not feasible. Therefore, the

problem either has to be avoided by not using this kind of objects or the

surface has to be removed during rendering, for example by using a depth

mask made for this purpose.

Being able to directly map objects to compute shader groups of currently

active sub steps is a form of coarse collision detection performed in advance.

In the worst case, the same amount of lattice cells has to be updated as were

during the simulation (see table 5.2). As it is the concept of the proxy objects

to use a rather low amount of proxy objects andmake up for it by employing

procedural effects, the amount of objects processed by a single thread group

naturally stays reasonable low. No test showedhigher timings for the physics

update as the shallow water simulation itself required. For the scene in

figure 5.7 a maximum of ∼0.25 ms was measured while using the most

ambitious quality settings sweE. Reading back buoyancy of approximately

256 objects takes ∼0.04 ms.

An issue arose since the shader compiler of the used Unreal Engine

version requires to be Direct3D 11 compliant even if Direct3D 12 is used.

During the physics update step, the depth and velocity of the shallow water

texture has to be read, updated and written again. This is a complete local

operation without the possibility for race conditions, but Direct3D 11 does

not support reading and writing from 4 channel 32 bit textures [Mic18b].

Therefore, a second pass had to be used to write the physics results to both

simulation texture arrays. This pass takes about 75% of the first physics

update pass and adds an unnecessary overhead that needs to be avoided
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in the future. Ultimately, an attempt could be made to merge the physics

update with the simulation step itself.

5.4 Projected Grid Approach

The biggest upsides of the projected grid approach are the simple implemen-

tation and the regular screen space grid that promises automatic adjustment

of mesh detail level. However, moving the camera also moves the grid’s

vertices. Thus, the sampling locations of the height field change which re-

sults in the swimming artefact. Additionally, the camera position must be

kept outside the maximum height offset by introducing a projector different

from the camera. With the camera close to the surface, the resulting mesh

then approaches a rectangle in world space no longer having the tight fit to

screen space while still suffering from the swimming artefact.

With the polar meshing improvement the swimming artefact problem

should be reduced during camera rotation. However, this can only work

while the projector’s position is identical to the camera’s position. As soon as

the projector differs, the origin of rotation is no longer the camera’s position

and the improvement fails to have any benefit. Additionally, the problem

still occurs during camera movement. Overall, it adds a lot of complexity to

the projected grid approach with very limited benefits.

Taking the minimum water height of a whole compute shader’s group

that covers multiple sample points as proposed in this work is a more

universal improvement that covers all type of camera movements. But it

only reduces the artefact’s strength. It is still noticeable and not removed.

Even without camera movements, problems can arise. Figure 5.4b shows

a particular problematic scene of very steep wave fronts that get very jaggy

because the mesh resolution is too low.

The projected grid approach certainly has its downsides. Once improve-

ments are introduced, the simple nature of the approach quickly gets lost.

The more measures are taken to counter its deficiencies, it becomes ques-

tionable whether it is reasonable to stick to the projected grid approach or

to employ a completely different method. This work’s conclusion on the

projected grid approach is that the decision to adopt it, should be based on

the answer of the question, if one can live with its deficiencies or not.
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6 Conclusion

This thesis examines the combination of deep water ocean waves and

a shallow water simulation to render an ocean reacting to different

environmental influences in real-time.

Deep water waves generated by a Fast Fourier Transform with inputs

sampled from multiple wave spectra can depict various sea states. It allows

to model the wind influence on the ocean and covers both local wind and

distant storms that produce low frequency swells. Sampling spectra for

seamless and immersive run-time animations requires special attention. A

sampling strategy was proposed, suitable for the multi-band FFT approach

which was adopted due its advantageous real-time properties. Additionally,

the sampling was implemented on the GPU with performance results that

highlight the potential of a full GPU solution. The greatest challenge and

performance impact was found in the memory layout of the numerous FFT

outputs. While some optimizations were suggested, future work could have

a closer look on how to efficiently handle the large amount of outputs.

The shallow water simulation supplements the deep water animation

withwaves reacting to the terrain and rigid bodies. Fading deepwaterwaves

and transferring them to the fluid simulation allows the highly-controllable

Fast Fourier Transform-based sea to react with the shore in a plausible way.

However, in the present state this transition lacks controllability andneeds to

be improved in future work. For rigid bodies, a system of proxy objects using

simple sphere-based collision detection and a preceding coarse GPU work

distributionwas developed. It is used to procedurallymodel effects of objects

on the simulated surface and to read back a buoyancy force. Besides some

technical problems, future work should improve the poor artistic control

that is offered by the procedural effect description.

A recent advancement of the Lattice Boltzmann Method is employed to

solve the shallow water equations. It is suitable for a GPU implementation,

has clear stability conditions and a reduced memory requirement but is

rather restrictive in terms of flow features. While a short comparison with

other simulation methods was presented, a more in-depth evaluation is

necessary to make a representative statement on which is the best choice.

Findings on the properties of the macroscopic LBM were used to
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describe a Level of Detail system that allows to cover a very large simulation

domain while maintaining high details in camera vicinity. An evaluation of

performance revealed possible improvements but confirmed its suitability

for a parallel implementation. While the proposed LOD implementation

turned out to be too complicated and difficult to maintain, the basic findings

remain valid and could be the basis for elaborate LOD systems in the future.

Employing it in a scientific context requires an analysis on accuracy, which

would be an interesting research topic. Since the Lattice Boltzmann Method

is still being actively researched, it is exciting to see what possibilities the

future will bring.

While rendering of the ocean surface is done by the Unreal Engine,

everything required to do so is covered by this work. Geometry of the ocean

surface is created using a projected grid approach adjusted to the camera

frustum. Here, minor improvements were achieved, but its deficiencies stay

prominent, and the conclusion was made to either accept them or switch to

a different geometry representation.

The total frame time of ocean simulation and rendering byUnreal Engine

is approximately 2.37 ms for lower quality settings, 3.17 ms for great quality

settings and 4.50 ms for some worst-case non-recommended settings. Times

were measured on the device as specified in chapter 5. Although these

times lie above the 2 ms frame budget for water rendering as specified in the

requirements’ analysis, the proposals drawn to improve performance give

reason to believe thatmeeting the 2 ms frame budget is achievable. Certainly,

tests need to be conducted on lower end hardware, but the existing options

of scalability should be sufficient to simulate and render an ocean similarly

albeit less detailed.

Adding more features that are missing due to the 2D nature of the

simulation is worthwhile for future work. At the same time foam should be

increased as it was indicated in this work. When reflecting on the insights

gained during the research for this work one can hardly wait on new

generations of hardware to throw off the shackles of two dimensions and

enjoy the delights of three.
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Glossary

Beaufort Scale The Beaufort Scale assigns 12 numbers to different wind

scales and describes the appearance of the sea [Ste08, p. 44]. 37

Direct3D Direct3D is a graphics application programming interface from

Microsoft to use the rendering pipeline or compute shaders [Mic20].

35, 80

Fast Fourier Transform The Fast Fourier Transform is an algorithm to

efficiently compute the discrete Fourier Transform. In the context

of this work it is connected with the approach of Tessendorf [Tes01] to

synthesize a tileable patch of ocean surface. 1, 13, 19, 42, 67, 68, 82

Froude number The Froude number is a non-dimensional ratio of the speed

of waves to their maximum speed [Bee97, p. 174]. 28

Gerstner Wave A Gernster Wave is a parametric description of a surface

wave with a trochoidal shape [Bee97, p. 344]. 4, 5, 13, 72

Octave GNU Octave is a free software and an interpreted language to

perform numerical computations. 42

A



Index of abbreviations

API application programming interface 35

BRDF bidirectional reflectance distribution function 6, 33, 63

CPU central processing unit 35, 42, 53, 56, 58, 68

FFT Fast Fourier Transform 2, 5, 8, 9, 14, 18–21, 33, 35, 38, 40–45, 54, 55, 63,

67, 69–74, 77, 82

GDC Game Developers Conference 5, 6

GPU graphics processing unit 2, 4, 7–9, 35, 37, 41–43, 47, 52, 56–58, 68, 69,

71, 75, 76, 78, 82

HLSL High Level Shading Language 35, 42, 63, 64

JONSWAP Joint North Sea Wave Project 15–17, 20, 37–39, 42

LBM Lattice Boltzmann method 2, 8, 9, 24, 25, 27, 28, 30, 35, 44, 46, 49, 55,

73, 75, 78, 79, 82

LOD level of detail 2, 35, 47–52, 55–57, 59, 61, 62, 73, 75–78, 83, E

SIGGRAPH Special InterestGroup onGraphics and Interactive Techniques

33, 34

SWE shallow water equations 7–9, 26

UE Unreal Engine 35, 67, 69, 80
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List of Symbols

c Celerity, phase speed, wave speed

d Depth

f Frequency

g Gravity 6 ≈ 9.81

h Height

$ Angular frequency

$? Angular peak frequency

T Period

p Pressure

c Point on the projected grid

� Density

t Time

u Velocity

� Wavelength

k Wave number

k Wave vector

x Position in R2


 Equilibrium constant controlling spectral in-

tensity

a Wave amplitude

� Exponential growth factor

Dir Directional spreading function

J Horizontal displacement

�3 Displacement scaling factor

fL Lower bound frequency

ffit Lower bound fitting factor

f max
Maximum frequency of a band

f min
Minimum frequency of a band

f? Peak frequency

f st

? Static peak frequency

fU Upper bound frequency

Γ Gamma function

ℎ̃ Fourier amplitude

C



List of Symbols

Hs Significant wave height

Hs
st

Static significant wave height

P Jacobian matrix of ocean displacement

J Determinant of jacobian matrix

L Spatial length

Δl Mesh spacing

�: Grid to wave vector scaling factor

m Index of a band

M Amount of bands in multi-band approach

N Fourier grid size

$max
Maximum angular frequency of a band

$st

? Static angular peak frequency

� Peak enhancement factor

pL Lower bound peak frequency factor

pU Upper bound peak frequency factor

�s Peak sampling enhancement factor

� Width of spectral peak

T? Peak period

Tst

? Static peak period

S Spectral density function

s Spread

� Angle between wave and wind direction

kmax
Maximum wave number of a band

uF Wind direction

F Wind fetch

Fst
Static wind fetch

U Wind speed

Ust
Static wind speed

C1 Bed friction coefficient

C8 Lattice direction force constant

d3 Desired depth that can be simulated

d Semi implicit depth average

e Particle speed

e8 8-th particle velocity vector

f8 8-th particle distribution

f 4@
8

Local equilibrium distribution function

�BF 5 Shallow water foam intensity

L Force term

Fr Froude number

l Shallow water grid spatial length

�dw Global deepwater influence on shallowwater

�8 Lattice direction equilibrium constant

�zone Deep water transfer zone factor

D



List of Symbols

hcam Altitude of the camera

� LOD bias

o Index of a LOD layer

Mact
Number of active LOD layers

MBD1
Number of substeps

Δt 5 Frame time

n Shallow water grid size

� Eddy or kinematic viscosity

Ω Collision operator

Re Reynolds number

� Single relaxation time

�1 Bed shear stress

∆t Delta time

V Volume

∆x Lattice size

z1 Bed elevation

zp
Sea bed peak transfer zone

zw
Sea bed transfer zone width
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